Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D938-D949, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38000386

RESUMO

Bridging the gap between genetic variations, environmental determinants, and phenotypic outcomes is critical for supporting clinical diagnosis and understanding mechanisms of diseases. It requires integrating open data at a global scale. The Monarch Initiative advances these goals by developing open ontologies, semantic data models, and knowledge graphs for translational research. The Monarch App is an integrated platform combining data about genes, phenotypes, and diseases across species. Monarch's APIs enable access to carefully curated datasets and advanced analysis tools that support the understanding and diagnosis of disease for diverse applications such as variant prioritization, deep phenotyping, and patient profile-matching. We have migrated our system into a scalable, cloud-based infrastructure; simplified Monarch's data ingestion and knowledge graph integration systems; enhanced data mapping and integration standards; and developed a new user interface with novel search and graph navigation features. Furthermore, we advanced Monarch's analytic tools by developing a customized plugin for OpenAI's ChatGPT to increase the reliability of its responses about phenotypic data, allowing us to interrogate the knowledge in the Monarch graph using state-of-the-art Large Language Models. The resources of the Monarch Initiative can be found at monarchinitiative.org and its corresponding code repository at github.com/monarch-initiative/monarch-app.


Assuntos
Bases de Dados Factuais , Doença , Genes , Fenótipo , Humanos , Internet , Bases de Dados Factuais/normas , Software , Genes/genética , Doença/genética
2.
F1000Res ; 12: 1568, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076297

RESUMO

The 24th annual Bioinformatics Open Source Conference ( BOSC 2023) was part of the 2023i conference on Intelligent Systems for Molecular Biology and the European Conference on Computational Biology (ISMB/ECCB 2023). Launched in 2000 and held yearly since, BOSC is the premier meeting covering open-source bioinformatics and open science. Like ISMB 2022, the 2023 meeting was a hybrid conference, with the in-person component hosted in Lyon, France. ISMB/ECCB attracted a near-record number of attendees, with over 2100 in person and about 900 more online. Approximately 200 people participated in BOSC sessions. In addition to 43 talks and 49 posters, BOSC featured two keynotes: Sara El-Gebali, who spoke about "A New Odyssey: Pioneering the Future of Scientific Progress Through Open Collaboration", and Joseph Yracheta, who spoke about "The Dissonance between Scientific Altruism & Capitalist Extraction: The Zero Trust and Federated Data Sovereignty Solution." Once again, a joint session brought together BOSC and the Bio-Ontologies COSI. The conference ended with a panel on Open and Ethical Data Sharing. As in prior years, BOSC was preceded by a CollaborationFest, a collaborative work event that brought together about 40 participants interested in synergistically combining ideas, shaping project plans, developing software, and more.


Assuntos
Biologia Computacional , Software , Humanos , Disseminação de Informação
3.
Med ; 4(12): 913-927.e3, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37963467

RESUMO

BACKGROUND: Navigating the clinical literature to determine the optimal clinical management for rare diseases presents significant challenges. We introduce the Medical Action Ontology (MAxO), an ontology specifically designed to organize medical procedures, therapies, and interventions. METHODS: MAxO incorporates logical structures that link MAxO terms to numerous other ontologies within the OBO Foundry. Term development involves a blend of manual and semi-automated processes. Additionally, we have generated annotations detailing diagnostic modalities for specific phenotypic abnormalities defined by the Human Phenotype Ontology (HPO). We introduce a web application, POET, that facilitates MAxO annotations for specific medical actions for diseases using the Mondo Disease Ontology. FINDINGS: MAxO encompasses 1,757 terms spanning a wide range of biomedical domains, from human anatomy and investigations to the chemical and protein entities involved in biological processes. These terms annotate phenotypic features associated with specific disease (using HPO and Mondo). Presently, there are over 16,000 MAxO diagnostic annotations that target HPO terms. Through POET, we have created 413 MAxO annotations specifying treatments for 189 rare diseases. CONCLUSIONS: MAxO offers a computational representation of treatments and other actions taken for the clinical management of patients. Its development is closely coupled to Mondo and HPO, broadening the scope of our computational modeling of diseases and phenotypic features. We invite the community to contribute disease annotations using POET (https://poet.jax.org/). MAxO is available under the open-source CC-BY 4.0 license (https://github.com/monarch-initiative/MAxO). FUNDING: NHGRI 1U24HG011449-01A1 and NHGRI 5RM1HG010860-04.


Assuntos
Ontologias Biológicas , Humanos , Doenças Raras , Software , Simulação por Computador
4.
medRxiv ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37503136

RESUMO

Navigating the vast landscape of clinical literature to find optimal treatments and management strategies can be a challenging task, especially for rare diseases. To address this task, we introduce the Medical Action Ontology (MAxO), the first ontology specifically designed to organize medical procedures, therapies, and interventions in a structured way. Currently, MAxO contains 1757 medical action terms added through a combination of manual and semi-automated processes. MAxO was developed with logical structures that make it compatible with several other ontologies within the Open Biological and Biomedical Ontologies (OBO) Foundry. These cover a wide range of biomedical domains, from human anatomy and investigations to the chemical and protein entities involved in biological processes. We have created a database of over 16000 annotations that describe diagnostic modalities for specific phenotypic abnormalities as defined by the Human Phenotype Ontology (HPO). Additionally, 413 annotations are provided for medical actions for 189 rare diseases. We have developed a web application called POET (https://poet.jax.org/) for the community to use to contribute MAxO annotations. MAxO provides a computational representation of treatments and other actions taken for the clinical management of patients. The development of MAxO is closely coupled to the Mondo Disease Ontology (Mondo) and the Human Phenotype Ontology (HPO) and expands the scope of our computational modeling of diseases and phenotypic features to include diagnostics and therapeutic actions. MAxO is available under the open-source CC-BY 4.0 license (https://github.com/monarch-initiative/MAxO).

5.
Bioinformatics ; 39(7)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37389415

RESUMO

MOTIVATION: Knowledge graphs (KGs) are a powerful approach for integrating heterogeneous data and making inferences in biology and many other domains, but a coherent solution for constructing, exchanging, and facilitating the downstream use of KGs is lacking. RESULTS: Here we present KG-Hub, a platform that enables standardized construction, exchange, and reuse of KGs. Features include a simple, modular extract-transform-load pattern for producing graphs compliant with Biolink Model (a high-level data model for standardizing biological data), easy integration of any OBO (Open Biological and Biomedical Ontologies) ontology, cached downloads of upstream data sources, versioned and automatically updated builds with stable URLs, web-browsable storage of KG artifacts on cloud infrastructure, and easy reuse of transformed subgraphs across projects. Current KG-Hub projects span use cases including COVID-19 research, drug repurposing, microbial-environmental interactions, and rare disease research. KG-Hub is equipped with tooling to easily analyze and manipulate KGs. KG-Hub is also tightly integrated with graph machine learning (ML) tools which allow automated graph ML, including node embeddings and training of models for link prediction and node classification. AVAILABILITY AND IMPLEMENTATION: https://kghub.org.


Assuntos
Ontologias Biológicas , COVID-19 , Humanos , Reconhecimento Automatizado de Padrão , Doenças Raras , Aprendizado de Máquina
6.
PLoS One ; 18(5): e0285433, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37196000

RESUMO

The Global Alliance for Genomics and Health (GA4GH) is a standards-setting organization that is developing a suite of coordinated standards for genomics. The GA4GH Phenopacket Schema is a standard for sharing disease and phenotype information that characterizes an individual person or biosample. The Phenopacket Schema is flexible and can represent clinical data for any kind of human disease including rare disease, complex disease, and cancer. It also allows consortia or databases to apply additional constraints to ensure uniform data collection for specific goals. We present phenopacket-tools, an open-source Java library and command-line application for construction, conversion, and validation of phenopackets. Phenopacket-tools simplifies construction of phenopackets by providing concise builders, programmatic shortcuts, and predefined building blocks (ontology classes) for concepts such as anatomical organs, age of onset, biospecimen type, and clinical modifiers. Phenopacket-tools can be used to validate the syntax and semantics of phenopackets as well as to assess adherence to additional user-defined requirements. The documentation includes examples showing how to use the Java library and the command-line tool to create and validate phenopackets. We demonstrate how to create, convert, and validate phenopackets using the library or the command-line application. Source code, API documentation, comprehensive user guide and a tutorial can be found at https://github.com/phenopackets/phenopacket-tools. The library can be installed from the public Maven Central artifact repository and the application is available as a standalone archive. The phenopacket-tools library helps developers implement and standardize the collection and exchange of phenotypic and other clinical data for use in phenotype-driven genomic diagnostics, translational research, and precision medicine applications.


Assuntos
Neoplasias , Software , Humanos , Genômica , Bases de Dados Factuais , Biblioteca Gênica
7.
Mamm Genome ; 34(3): 364-378, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37076585

RESUMO

Existing phenotype ontologies were originally developed to represent phenotypes that manifest as a character state in relation to a wild-type or other reference. However, these do not include the phenotypic trait or attribute categories required for the annotation of genome-wide association studies (GWAS), Quantitative Trait Loci (QTL) mappings or any population-focussed measurable trait data. The integration of trait and biological attribute information with an ever increasing body of chemical, environmental and biological data greatly facilitates computational analyses and it is also highly relevant to biomedical and clinical applications. The Ontology of Biological Attributes (OBA) is a formalised, species-independent collection of interoperable phenotypic trait categories that is intended to fulfil a data integration role. OBA is a standardised representational framework for observable attributes that are characteristics of biological entities, organisms, or parts of organisms. OBA has a modular design which provides several benefits for users and data integrators, including an automated and meaningful classification of trait terms computed on the basis of logical inferences drawn from domain-specific ontologies for cells, anatomical and other relevant entities. The logical axioms in OBA also provide a previously missing bridge that can computationally link Mendelian phenotypes with GWAS and quantitative traits. The term components in OBA provide semantic links and enable knowledge and data integration across specialised research community boundaries, thereby breaking silos.


Assuntos
Ontologias Biológicas , Disciplinas das Ciências Biológicas , Estudo de Associação Genômica Ampla , Fenótipo
8.
Adv Genet (Hoboken) ; 4(1): 2200016, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36910590

RESUMO

The Global Alliance for Genomics and Health (GA4GH) is developing a suite of coordinated standards for genomics for healthcare. The Phenopacket is a new GA4GH standard for sharing disease and phenotype information that characterizes an individual person, linking that individual to detailed phenotypic descriptions, genetic information, diagnoses, and treatments. A detailed example is presented that illustrates how to use the schema to represent the clinical course of a patient with retinoblastoma, including demographic information, the clinical diagnosis, phenotypic features and clinical measurements, an examination of the extirpated tumor, therapies, and the results of genomic analysis. The Phenopacket Schema, together with other GA4GH data and technical standards, will enable data exchange and provide a foundation for the computational analysis of disease and phenotype information to improve our ability to diagnose and conduct research on all types of disorders, including cancer and rare diseases.

9.
bioRxiv ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36747660

RESUMO

Existing phenotype ontologies were originally developed to represent phenotypes that manifest as a character state in relation to a wild-type or other reference. However, these do not include the phenotypic trait or attribute categories required for the annotation of genome-wide association studies (GWAS), Quantitative Trait Loci (QTL) mappings or any population-focused measurable trait data. Moreover, variations in gene expression in response to environmental disturbances even without any genetic alterations can also be associated with particular biological attributes. The integration of trait and biological attribute information with an ever increasing body of chemical, environmental and biological data greatly facilitates computational analyses and it is also highly relevant to biomedical and clinical applications. The Ontology of Biological Attributes (OBA) is a formalised, species-independent collection of interoperable phenotypic trait categories that is intended to fulfil a data integration role. OBA is a standardised representational framework for observable attributes that are characteristics of biological entities, organisms, or parts of organisms. OBA has a modular design which provides several benefits for users and data integrators, including an automated and meaningful classification of trait terms computed on the basis of logical inferences drawn from domain-specific ontologies for cells, anatomical and other relevant entities. The logical axioms in OBA also provide a previously missing bridge that can computationally link Mendelian phenotypes with GWAS and quantitative traits. The term components in OBA provide semantic links and enable knowledge and data integration across specialised research community boundaries, thereby breaking silos.

10.
F1000Res ; 11: 1034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36128559

RESUMO

The 23 rd annual Bioinformatics Open Source Conference (BOSC 2022) was part of this year's conference on Intelligent Systems for Molecular Biology (ISMB). Launched in 2000 and held every year since, BOSC is the premier meeting covering open source bioinformatics and open science. ISMB 2022 was, for the first time, a hybrid conference, with the in-person component hosted in Madison, Wisconsin (USA). About 1000 people attended ISMB 2022 in person, with another 800 online. Approximately 200 people participated in BOSC sessions, which included 28 talks chosen from submitted abstracts, 46 posters, and a panel discussion, "Building and Sustaining Inclusive Open Science Communities". BOSC 2022 included joint keynotes with two other COSIs. Jason Williams gave a BOSC / Education COSI keynote entitled "Riding the bicycle: Including all scientists on a path to excellence". A joint session with Bio-Ontologies featured a keynote by Melissa Haendel, "The open data highway: turbo-boosting translational traffic with ontologies."


Assuntos
Biologia Computacional , Biologia de Sistemas , Congressos como Assunto , Humanos
11.
Am J Med Genet C Semin Med Genet ; 190(2): 231-242, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35872606

RESUMO

Technological advances in both genome sequencing and prenatal imaging are increasing our ability to accurately recognize and diagnose Mendelian conditions prenatally. Phenotype-driven early genetic diagnosis of fetal genetic disease can help to strategize treatment options and clinical preventive measures during the perinatal period, to plan in utero therapies, and to inform parental decision-making. Fetal phenotypes of genetic diseases are often unique and at present are not well understood; more comprehensive knowledge about prenatal phenotypes and computational resources have an enormous potential to improve diagnostics and translational research. The Human Phenotype Ontology (HPO) has been widely used to support diagnostics and translational research in human genetics. To better support prenatal usage, the HPO consortium conducted a series of workshops with a group of domain experts in a variety of medical specialties, diagnostic techniques, as well as diseases and phenotypes related to prenatal medicine, including perinatal pathology, musculoskeletal anomalies, neurology, medical genetics, hydrops fetalis, craniofacial malformations, cardiology, neonatal-perinatal medicine, fetal medicine, placental pathology, prenatal imaging, and bioinformatics. We expanded the representation of prenatal phenotypes in HPO by adding 95 new phenotype terms under the Abnormality of prenatal development or birth (HP:0001197) grouping term, and revised definitions, synonyms, and disease annotations for most of the 152 terms that existed before the beginning of this effort. The expansion of prenatal phenotypes in HPO will support phenotype-driven prenatal exome and genome sequencing for precision genetic diagnostics of rare diseases to support prenatal care.


Assuntos
Biologia Computacional , Placenta , Recém-Nascido , Humanos , Feminino , Gravidez , Biologia Computacional/métodos , Fenótipo , Doenças Raras , Sequenciamento do Exoma
13.
Database (Oxford) ; 20222022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35616100

RESUMO

Despite progress in the development of standards for describing and exchanging scientific information, the lack of easy-to-use standards for mapping between different representations of the same or similar objects in different databases poses a major impediment to data integration and interoperability. Mappings often lack the metadata needed to be correctly interpreted and applied. For example, are two terms equivalent or merely related? Are they narrow or broad matches? Or are they associated in some other way? Such relationships between the mapped terms are often not documented, which leads to incorrect assumptions and makes them hard to use in scenarios that require a high degree of precision (such as diagnostics or risk prediction). Furthermore, the lack of descriptions of how mappings were done makes it hard to combine and reconcile mappings, particularly curated and automated ones. We have developed the Simple Standard for Sharing Ontological Mappings (SSSOM) which addresses these problems by: (i) Introducing a machine-readable and extensible vocabulary to describe metadata that makes imprecision, inaccuracy and incompleteness in mappings explicit. (ii) Defining an easy-to-use simple table-based format that can be integrated into existing data science pipelines without the need to parse or query ontologies, and that integrates seamlessly with Linked Data principles. (iii) Implementing open and community-driven collaborative workflows that are designed to evolve the standard continuously to address changing requirements and mapping practices. (iv) Providing reference tools and software libraries for working with the standard. In this paper, we present the SSSOM standard, describe several use cases in detail and survey some of the existing work on standardizing the exchange of mappings, with the goal of making mappings Findable, Accessible, Interoperable and Reusable (FAIR). The SSSOM specification can be found at http://w3id.org/sssom/spec. Database URL: http://w3id.org/sssom/spec.


Assuntos
Metadados , Web Semântica , Gerenciamento de Dados , Bases de Dados Factuais , Fluxo de Trabalho
14.
F1000Res ; 102021.
Artigo em Inglês | MEDLINE | ID: mdl-34721839

RESUMO

The 22nd annual Bioinformatics Open Source Conference (BOSC 2021, open-bio.org/events/bosc-2021/) was held online as a track of the 2021 Intelligent Systems for Molecular Biology / European Conference on Computational Biology (ISMB/ECCB) conference. Launched in 2000 and held every year since, BOSC is the premier meeting covering topics related to open source software and open science in bioinformatics. In 2020, BOSC partnered with the Galaxy Community Conference to form the Bioinformatics Community Conference (BCC2020); that was the first BOSC to be held online. This year, BOSC returned to its roots as part of ISMB/ECCB 2021. As in 2020, the Covid-19 pandemic made it impossible to hold the conference in person, so ISMB/ECCB 2021 took place as an online meeting attended by over 2000 people from 79 countries. Nearly 200 people participated in BOSC sessions, which included 27 talks reviewed and selected from submitted abstracts, and three invited keynote talks representing a range of global perspectives on the role of open science and open source in driving research and inclusivity in the biosciences, one of which was presented in French with English subtitles.


Assuntos
Biologia Computacional , Humanos , Pandemias , Software
15.
Nucleic Acids Res ; 49(D1): D1207-D1217, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33264411

RESUMO

The Human Phenotype Ontology (HPO, https://hpo.jax.org) was launched in 2008 to provide a comprehensive logical standard to describe and computationally analyze phenotypic abnormalities found in human disease. The HPO is now a worldwide standard for phenotype exchange. The HPO has grown steadily since its inception due to considerable contributions from clinical experts and researchers from a diverse range of disciplines. Here, we present recent major extensions of the HPO for neurology, nephrology, immunology, pulmonology, newborn screening, and other areas. For example, the seizure subontology now reflects the International League Against Epilepsy (ILAE) guidelines and these enhancements have already shown clinical validity. We present new efforts to harmonize computational definitions of phenotypic abnormalities across the HPO and multiple phenotype ontologies used for animal models of disease. These efforts will benefit software such as Exomiser by improving the accuracy and scope of cross-species phenotype matching. The computational modeling strategy used by the HPO to define disease entities and phenotypic features and distinguish between them is explained in detail.We also report on recent efforts to translate the HPO into indigenous languages. Finally, we summarize recent advances in the use of HPO in electronic health record systems.


Assuntos
Ontologias Biológicas , Biologia Computacional/métodos , Bases de Dados Factuais , Doença/genética , Genoma , Fenótipo , Software , Animais , Modelos Animais de Doenças , Genótipo , Humanos , Recém-Nascido , Cooperação Internacional , Internet , Triagem Neonatal/métodos , Farmacogenética/métodos , Terminologia como Assunto
16.
Patterns (N Y) ; 2(1): 100155, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33196056

RESUMO

Integrated, up-to-date data about SARS-CoV-2 and COVID-19 is crucial for the ongoing response to the COVID-19 pandemic by the biomedical research community. While rich biological knowledge exists for SARS-CoV-2 and related viruses (SARS-CoV, MERS-CoV), integrating this knowledge is difficult and time-consuming, since much of it is in siloed databases or in textual format. Furthermore, the data required by the research community vary drastically for different tasks; the optimal data for a machine learning task, for example, is much different from the data used to populate a browsable user interface for clinicians. To address these challenges, we created KG-COVID-19, a flexible framework that ingests and integrates heterogeneous biomedical data to produce knowledge graphs (KGs), and applied it to create a KG for COVID-19 response. This KG framework also can be applied to other problems in which siloed biomedical data must be quickly integrated for different research applications, including future pandemics.

17.
F1000Res ; 92020.
Artigo em Inglês | MEDLINE | ID: mdl-32983415

RESUMO

Launched in 2000 and held every year since, the Bioinformatics Open Source Conference (BOSC) is a volunteer-run meeting coordinated by the Open Bioinformatics Foundation (OBF) that covers open source software development and open science in bioinformatics. Most years, BOSC has been part of the Intelligent Systems for Molecular Biology (ISMB) conference, but in 2018, and again in 2020, BOSC partnered with the Galaxy Community Conference (GCC). This year's combined BOSC + GCC conference was called the Bioinformatics Community Conference (BCC2020, bcc2020.github.io). Originally slated to take place in Toronto, Canada, BCC2020 was moved online due to COVID-19. The meeting started with a wide array of training sessions; continued with a main program of keynote presentations, talks, posters, Birds of a Feather, and more; and ended with four days of collaboration (CoFest). Efforts to make the meeting accessible and inclusive included very low registration fees, talks presented twice a day, and closed captioning for all videos. More than 800 people from 61 countries registered for at least one part of the meeting, which was held mostly in the Remo.co video-conferencing platform.


Assuntos
Biologia Computacional , Congressos como Assunto , Canadá , Humanos
18.
bioRxiv ; 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32839776

RESUMO

Integrated, up-to-date data about SARS-CoV-2 and coronavirus disease 2019 (COVID-19) is crucial for the ongoing response to the COVID-19 pandemic by the biomedical research community. While rich biological knowledge exists for SARS-CoV-2 and related viruses (SARS-CoV, MERS-CoV), integrating this knowledge is difficult and time consuming, since much of it is in siloed databases or in textual format. Furthermore, the data required by the research community varies drastically for different tasks - the optimal data for a machine learning task, for example, is much different from the data used to populate a browsable user interface for clinicians. To address these challenges, we created KG-COVID-19, a flexible framework that ingests and integrates biomedical data to produce knowledge graphs (KGs) for COVID-19 response. This KG framework can also be applied to other problems in which siloed biomedical data must be quickly integrated for different research applications, including future pandemics. BIGGER PICTURE: An effective response to the COVID-19 pandemic relies on integration of many different types of data available about SARS-CoV-2 and related viruses. KG-COVID-19 is a framework for producing knowledge graphs that can be customized for downstream applications including machine learning tasks, hypothesis-based querying, and browsable user interface to enable researchers to explore COVID-19 data and discover relationships.

19.
Genome Biol Evol ; 12(7): 1099-1188, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32442304

RESUMO

The tremendous diversity of Hymenoptera is commonly attributed to the evolution of parasitoidism in the last common ancestor of parasitoid sawflies (Orussidae) and wasp-waisted Hymenoptera (Apocrita). However, Apocrita and Orussidae differ dramatically in their species richness, indicating that the diversification of Apocrita was promoted by additional traits. These traits have remained elusive due to a paucity of sawfly genome sequences, in particular those of parasitoid sawflies. Here, we present comparative analyses of draft genomes of the primarily phytophagous sawfly Athalia rosae and the parasitoid sawfly Orussus abietinus. Our analyses revealed that the ancestral hymenopteran genome exhibited traits that were previously considered unique to eusocial Apocrita (e.g., low transposable element content and activity) and a wider gene repertoire than previously thought (e.g., genes for CO2 detection). Moreover, we discovered that Apocrita evolved a significantly larger array of odorant receptors than sawflies, which could be relevant to the remarkable diversification of Apocrita by enabling efficient detection and reliable identification of hosts.


Assuntos
Especiação Genética , Genoma de Inseto , Interações Hospedeiro-Parasita/genética , Himenópteros/genética , Sequência de Aminoácidos , Animais , Sequência Conservada , Elementos de DNA Transponíveis , Feminino , Dosagem de Genes , Glicoproteínas/genética , Herbivoria/genética , Imunidade/genética , Proteínas de Insetos/genética , Masculino , Família Multigênica , Receptores Odorantes/genética , Comportamento Social , Visão Ocular/genética
20.
BMC Genomics ; 21(1): 227, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32171258

RESUMO

BACKGROUND: Halyomorpha halys (Stål), the brown marmorated stink bug, is a highly invasive insect species due in part to its exceptionally high levels of polyphagy. This species is also a nuisance due to overwintering in human-made structures. It has caused significant agricultural losses in recent years along the Atlantic seaboard of North America and in continental Europe. Genomic resources will assist with determining the molecular basis for this species' feeding and habitat traits, defining potential targets for pest management strategies. RESULTS: Analysis of the 1.15-Gb draft genome assembly has identified a wide variety of genetic elements underpinning the biological characteristics of this formidable pest species, encompassing the roles of sensory functions, digestion, immunity, detoxification and development, all of which likely support H. halys' capacity for invasiveness. Many of the genes identified herein have potential for biomolecular pesticide applications. CONCLUSIONS: Availability of the H. halys genome sequence will be useful for the development of environmentally friendly biomolecular pesticides to be applied in concert with more traditional, synthetic chemical-based controls.


Assuntos
Heterópteros/genética , Proteínas de Insetos/genética , Resistência a Inseticidas , Sequenciamento Completo do Genoma/métodos , Animais , Ecossistema , Transferência Genética Horizontal , Tamanho do Genoma , Heterópteros/classificação , Espécies Introduzidas , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA