Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hum Mutat ; 40(11): 2131-2145, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31322790

RESUMO

Noncoding RNAs have been widely recognized as essential mediators of gene regulation. However, in contrast to protein-coding genes, much less is known about the influence of noncoding RNAs on human diseases. Here we examined the association of genetic variants located in primary microRNA sequences and long noncoding RNAs (lncRNAs) with Alzheimer disease (AD) by leveraging data from the largest genome-wide association meta-analysis of late-onset AD. Variants annotated to 5 miRNAs and 10 lncRNAs (in seven distinct loci) exceeded the Bonferroni-corrected significance threshold (p < 1.02 × 10-6 ). Among these, a leading variant (rs2526377:A>G) at the 17q22 locus annotated to two noncoding RNAs (MIR142 and BZRAP1-AS) was significantly associated with a reduced risk of AD and fulfilled predefined criteria for being a functional variant. Our functional genomic analyses revealed that rs2526377 affects the promoter activity and decreases the expression of miR-142. Moreover, differential expression analysis by RNA-Seq in human iPSC-derived neural progenitor cells and the hippocampus of miR-142 knockout mice demonstrated multiple target genes of miR-142 in the brain that are likely to be involved in the inflammatory and neurodegenerative manifestations of AD. These include TGFBR1 and PICALM, of which their derepression in the brain due to reduced expression levels of miR-142-3p may reduce the risk of AD.


Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença , Variação Genética , MicroRNAs/genética , Regiões Promotoras Genéticas , Alelos , Doença de Alzheimer/metabolismo , Animais , Linhagem Celular , Mapeamento Cromossômico , Biologia Computacional/métodos , Modelos Animais de Doenças , Regulação da Expressão Gênica , Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Hipocampo/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Polimorfismo de Nucleotídeo Único , Interferência de RNA , RNA não Traduzido
2.
Nat Neurosci ; 22(8): 1235-1247, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31235931

RESUMO

Mutations affecting the gene encoding the ubiquitin ligase UBE3A cause Angelman syndrome. Although most studies focus on the synaptic function of UBE3A, we show that UBE3A is highly enriched in the nucleus of mouse and human neurons. We found that the two major isoforms of UBE3A exhibit highly distinct nuclear versus cytoplasmic subcellular localization. Both isoforms undergo nuclear import through direct binding to PSMD4 (also known as S5A or RPN10), but the amino terminus of the cytoplasmic isoform prevents nuclear retention. Mice lacking the nuclear UBE3A isoform recapitulate the behavioral and electrophysiological phenotypes of Ube3am-/p+ mice, whereas mice harboring a targeted deletion of the cytosolic isoform are unaffected. Finally, we identified Angelman syndrome-associated UBE3A missense mutations that interfere with either nuclear targeting or nuclear retention of UBE3A. Taken together, our findings elucidate the mechanisms underlying the subcellular localization of UBE3A, and indicate that the nuclear UBE3A isoform is the most critical for the pathophysiology of Angelman syndrome.


Assuntos
Síndrome de Angelman/genética , Síndrome de Angelman/psicologia , Comportamento Animal , Ubiquitina-Proteína Ligases/genética , Animais , Proteínas de Transporte/metabolismo , Núcleo Celular/enzimologia , Núcleo Celular/genética , Citosol/enzimologia , Fenômenos Eletrofisiológicos/genética , Feminino , Humanos , Isoenzimas/genética , Masculino , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto/genética , Comportamento de Nidação , Neurônios/enzimologia , Desempenho Psicomotor , Proteínas de Ligação a RNA , Natação/psicologia , Dedos de Zinco
3.
Sci Rep ; 7(1): 8863, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821816

RESUMO

The directed differentiation of patient-derived induced pluripotent stem cells into cell-type specific neurons has inspired the development of therapeutic discovery for neurodegenerative diseases. Many forms of ataxia result from degeneration of cerebellar Purkinje cells, but thus far it has not been possible to efficiently generate Purkinje neuron (PN) progenitors from human or mouse pluripotent stem cells, let alone to develop a methodology for in vivo transplantation in the adult cerebellum. Here, we present a protocol to obtain an expandable population of cerebellar neuron progenitors from mouse embryonic stem cells. Our protocol is characterized by applying factors that promote proliferation of cerebellar progenitors. Cerebellar progenitors isolated in culture from cell aggregates contained a stable subpopulation of PN progenitors that could be expanded for up to 6 passages. When transplanted into the adult cerebellum of either wild-type mice or a strain lacking Purkinje cells (L7cre-ERCC1 knockout), GFP-labeled progenitors differentiated in vivo to establish a population of calbindin-positive cells in the molecular layer with dendritic trees typical of mature PNs. We conclude that this protocol may be useful for the generation and maturation of PNs, highlighting the potential for development of a regenerative medicine approach to the treatment of cerebellar neurodegenerative diseases.


Assuntos
Diferenciação Celular , Cerebelo/citologia , Células-Tronco Embrionárias/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células de Purkinje/citologia , Células de Purkinje/metabolismo , Potenciais de Ação , Fatores Etários , Animais , Biomarcadores , Técnicas de Cultura de Células , Células Cultivadas , Meios de Cultura , Feminino , Imunofluorescência , Expressão Gênica , Genes Reporter , Imunofenotipagem , Masculino , Camundongos , Transplante de Células-Tronco
4.
EMBO J ; 36(10): 1392-1411, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28331029

RESUMO

Presynaptic terminals are metabolically active and accrue damage through continuous vesicle cycling. How synapses locally regulate protein homeostasis is poorly understood. We show that the presynaptic lipid phosphatase synaptojanin is required for macroautophagy, and this role is inhibited by the Parkinson's disease mutation R258Q. Synaptojanin drives synaptic endocytosis by dephosphorylating PI(4,5)P2, but this function appears normal in SynaptojaninRQ knock-in flies. Instead, R258Q affects the synaptojanin SAC1 domain that dephosphorylates PI(3)P and PI(3,5)P2, two lipids found in autophagosomal membranes. Using advanced imaging, we show that SynaptojaninRQ mutants accumulate the PI(3)P/PI(3,5)P2-binding protein Atg18a on nascent synaptic autophagosomes, blocking autophagosome maturation at fly synapses and in neurites of human patient induced pluripotent stem cell-derived neurons. Additionally, we observe neurodegeneration, including dopaminergic neuron loss, in SynaptojaninRQ flies. Thus, synaptojanin is essential for macroautophagy within presynaptic terminals, coupling protein turnover with synaptic vesicle cycling and linking presynaptic-specific autophagy defects to Parkinson's disease.


Assuntos
Autofagossomos/metabolismo , Autofagia , Proteínas do Tecido Nervoso/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Terminações Pré-Sinápticas/enzimologia , Terminações Pré-Sinápticas/metabolismo , Substituição de Aminoácidos , Animais , Proteínas Relacionadas à Autofagia/análise , Células Cultivadas , Drosophila , Humanos , Proteínas de Membrana/análise , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Doença de Parkinson/patologia , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/genética
5.
Stem Cell Reports ; 3(4): 548-55, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25358783

RESUMO

Silencing of the FMR1 gene leads to fragile X syndrome, the most common cause of inherited intellectual disability. To study the epigenetic modifications of the FMR1 gene during silencing in time, we used fibroblasts and induced pluripotent stem cells (iPSCs) of an unmethylated full mutation (uFM) individual with normal intelligence. The uFM fibroblast line carried an unmethylated FMR1 promoter region and expressed normal to slightly increased FMR1 mRNA levels. The FMR1 expression in the uFM line corresponds with the increased H3 acetylation and H3K4 methylation in combination with a reduced H3K9 methylation. After reprogramming, the FMR1 promoter region was methylated in all uFM iPSC clones. Two clones were analyzed further and showed a lack of FMR1 expression, whereas the presence of specific histone modifications also indicated a repressed FMR1 promoter. In conclusion, these findings demonstrate that the standard reprogramming procedure leads to epigenetic silencing of the fully mutated FMR1 gene.


Assuntos
Metilação de DNA , Fibroblastos/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Inativação Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Adolescente , Animais , Estudos de Casos e Controles , Linhagem Celular , Reprogramação Celular , Criança , Pré-Escolar , Feminino , Fibroblastos/citologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Histonas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Camundongos , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA