Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1755: 147263, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33422525

RESUMO

Chronic low back pain (CLBP) is a leading cause of disability and is associated with neurodegenerative changes in brain structure. These changes lead to impairments in cognitive function and are consistent with those seen in aging, suggesting an accelerated aging pattern. In this study we assessed this using machine-learning estimated brain age (BA) as a holistic metric of morphometric changes associated with aging. Structural imaging data from 31 non-depressed CLBP patients and 32 healthy controls from the Pain and Interoception Imaging Network were included. Using our previously developed algorithm, we estimated BA per individual based on grey matter density. We then conducted multivariable linear modeling for effects of group, chronological age, and their interaction on BA. We also performed two voxel-wise analyses comparing grey matter density between CLBP and control individuals and the association between gray matter density and BA. There was an interaction between CLBP and greater chronological age on BA such that the discrepancy in BA between healthy and CLBP individuals was greater for older individuals. In CLBP individuals, BA was not associated with sex, current level of pain, duration of CLBP, or mild to moderate depressive symptoms. CLBP individuals had lower cerebellar grey matter density compared to healthy individuals. Brain age was associated with lower gray matter density in numerous brain regions. CLBP was associated with greater BA, which was more profound in later life. BA as a holistic metric was sensitive to differences in gray matter density in numerous regions which eluded direct comparison between groups.


Assuntos
Envelhecimento/fisiologia , Córtex Cerebral/fisiopatologia , Cognição/fisiologia , Substância Cinzenta/fisiopatologia , Dor Lombar/fisiopatologia , Dor Crônica/fisiopatologia , Humanos , Imageamento por Ressonância Magnética/métodos , Medição da Dor
2.
Neurobiol Aging ; 87: 44-48, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31843257

RESUMO

Brain age prediction is a machine learning method that estimates an individual's chronological age from their neuroimaging scans. Brain age indicates whether an individual's brain appears "older" than age-matched healthy peers, suggesting that they may have experienced a higher cumulative exposure to brain insults or were more impacted by those pathological insults. However, contemporary brain age models include older participants with amyloid pathology in their training sets and thus may be confounded when studying Alzheimer's disease (AD). We showed that amyloid status is a critical feature for brain age prediction models. We trained a model on T1-weighted MRI images participants without amyloid pathology. MRI data were processed to estimate gray matter density voxel-wise, which were then used to predict chronological age. Our model performed accurately comparable to previous models. Notably, we demonstrated more significant differences between AD diagnostic groups than other models. In addition, our model was able to delineate significant differences in brain age relative to chronological age between cognitively normal individuals with and without amyloid. Incorporation of amyloid status in brain age prediction models ultimately improves the utility of brain age as a biomarker for AD.


Assuntos
Envelhecimento , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/psicologia , Encéfalo/diagnóstico por imagem , Reserva Cognitiva , Imagem de Difusão por Ressonância Magnética , Feminino , Previsões , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Neuroimagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA