Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
EFSA J ; 22(5): e8809, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38756349

RESUMO

In 2023, 14 Member States were affected by African swine fever (ASF), including Croatia and Sweden where ASF emerged (wild boar outbreaks only) and Greece where ASF re-emerged after being free since 2021. The number of ASF outbreaks among domestic pigs in the EU was five times higher than in 2022, reaching a similar magnitude to that in 2019. This was predominantly driven by the introduction and subsequent spread of ASF in Croatia and its resurgence in Romania, representing 96% of the EU outbreaks. ASF outbreaks in domestic pigs were clearly seasonal in all countries, with 88% of outbreaks reported between July and October. Most of the ASF outbreaks among domestic pigs were detected through clinical suspicion (94%), followed by tracing from affected establishments (3%), and the weekly testing of at least two dead pigs in establishments (3%). In wild boar, a 10% increase in the number of notified outbreaks was observed in the EU in comparison with 2022, with considerable variations between countries. A winter peak was observed only in Poland, Slovakia and Hungary. The epidemiological situation in wild boar improved in Germany and Hungary, as suggested by the decrease in the number of outbreaks and in the proportions of PCR-positive samples from dead wild boar. Overall, 31% of wild boar carcasses found during passive surveillance tested positive by PCR, representing 69% of the ASF outbreaks in wild boar in the EU. In contrast, 0.4% of hunted wild boar tested positive, representing 31% of the outbreaks. Despite the introduction of ASF into new countries and the increase in the number of outbreaks, the size of restricted zones in the EU remained stable, due to the highly clustered outbreaks in Croatia, and the reduction of restricted zones in Poland, Slovakia and Bulgaria (in domestic pigs), and Hungary (in wild boar).

2.
EFSA J ; 21(10): e08271, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37822713

RESUMO

Several vaccines have been developed against highly pathogenic avian influenza (HPAI), mostly inactivated whole-virus vaccines for chickens. In the EU, one vaccine is authorised in chickens but is not fully efficacious to stop transmission, highlighting the need for vaccines tailored to diverse poultry species and production types. Off-label use of vaccines is possible, but effectiveness varies. Vaccines are usually injectable, a time-consuming process. Mass-application vaccines outside hatcheries remain rare. First vaccination varies from in-ovo to 6 weeks of age. Data about immunity onset and duration in the target species are often unavailable, despite being key for effective planning. Minimising antigenic distance between vaccines and field strains is essential, requiring rapid updates of vaccines to match circulating strains. Generating harmonised vaccine efficacy data showing vaccine ability to reduce transmission is crucial and this ability should be also assessed in field trials. Planning vaccination requires selecting the most adequate vaccine type and vaccination scheme. Emergency protective vaccination is limited to vaccines that are not restricted by species, age or pre-existing vector-immunity, while preventive vaccination should prioritise achieving the highest protection, especially for the most susceptible species in high-risk transmission areas. Model simulations in France, Italy and The Netherlands revealed that (i) duck and turkey farms are more infectious than chickens, (ii) depopulating infected farms only showed limitations in controlling disease spread, while 1-km ring-culling performed better than or similar to emergency preventive ring-vaccination scenarios, although with the highest number of depopulated farms, (iii) preventive vaccination of the most susceptible species in high-risk transmission areas was the best option to minimise the outbreaks' number and duration, (iv) during outbreaks in such areas, emergency protective vaccination in a 3-km radius was more effective than 1- and 10-km radius. Vaccine efficacy should be monitored and complement other surveillance and preventive efforts.

3.
EFSA J ; 21(5): e08016, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37223755

RESUMO

This report presents the epidemiological analysis of African swine fever (ASF) during 2022 based on the surveillance and pig population data submitted by the European Union (EU) affected countries and one neighbouring country. Coinciding with regulatory changes and an important decrease in ASF outbreaks in 2022 in the EU, the number of domestic pig samples tested as part of active surveillance decreased by 80%, while the number of samples from passive surveillance almost doubled compared with 2021. Most outbreaks among domestic pigs in the EU were detected by testing clinical suspicions (93% of outbreaks), followed by tracing activities (5%) and weekly testing of the first two dead pigs per establishment (2%). Although most of the wild boar samples came from hunted animals, the probability of detecting PCR-positive animals was much higher in wild boar found dead. The ASF outbreaks among domestic pigs in the EU decreased by 79% while a decrease of 40% in the wild boar cases was observed in comparison with 2021. This was strongly marked in Romania, Poland and Bulgaria, with a reduction of 50-80% compared with 2021. In many countries, an important decrease in the number of pig establishments was observed, especially of small establishments with fewer than 100 pigs. The regional between farm incidence and proportion of pigs lost due to ASF in the EU was in general very low (average of 1%) apart from some regions in Romania. The impact of ASF on wild boar populations was variable, with a decline in wild boar abundance observed in certain countries versus a stable or even increased population after ASF introduction. This supports the negative relationship observed in this report between the proportion of the country with restricted zones due to ASF in wild boar and wild boar hunting bags.

4.
EFSA J ; 21(2): e07822, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36860662

RESUMO

The epidemiological situation of SARS-CoV-2 in humans and animals is continually evolving. To date, animal species known to transmit SARS-CoV-2 are American mink, raccoon dog, cat, ferret, hamster, house mouse, Egyptian fruit bat, deer mouse and white-tailed deer. Among farmed animals, American mink have the highest likelihood to become infected from humans or animals and further transmit SARS-CoV-2. In the EU, 44 outbreaks were reported in 2021 in mink farms in seven MSs, while only six in 2022 in two MSs, thus representing a decreasing trend. The introduction of SARS-CoV-2 into mink farms is usually via infected humans; this can be controlled by systematically testing people entering farms and adequate biosecurity. The current most appropriate monitoring approach for mink is the outbreak confirmation based on suspicion, testing dead or clinically sick animals in case of increased mortality or positive farm personnel and the genomic surveillance of virus variants. The genomic analysis of SARS-CoV-2 showed mink-specific clusters with a potential to spill back into the human population. Among companion animals, cats, ferrets and hamsters are those at highest risk of SARS-CoV-2 infection, which most likely originates from an infected human, and which has no or very low impact on virus circulation in the human population. Among wild animals (including zoo animals), mostly carnivores, great apes and white-tailed deer have been reported to be naturally infected by SARS-CoV-2. In the EU, no cases of infected wildlife have been reported so far. Proper disposal of human waste is advised to reduce the risks of spill-over of SARS-CoV-2 to wildlife. Furthermore, contact with wildlife, especially if sick or dead, should be minimised. No specific monitoring for wildlife is recommended apart from testing hunter-harvested animals with clinical signs or found-dead. Bats should be monitored as a natural host of many coronaviruses.

5.
EFSA J ; 20(9): e07444, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36092762

RESUMO

In the framework of its Farm to Fork Strategy, the Commission is undertaking a comprehensive evaluation of animal welfare legislation. This opinion deals with the protection of horses and donkeys during transport. While the opinion focuses primarily on road transport of horses, there are specific sections dealing with the transport of horses on roll-on-roll-off ferries, horses transported by air and the transport of donkeys. In addition, the opinion covers welfare concerns in relation to a specific scenario identified by the European Commission related to the transport of horses on long journeys to slaughterhouses. Current practices related to transport of horses during the different stages (preparation, loading and unloading, transit and the journey breaks) are described. Overall, 13 welfare consequences were identified as being highly relevant for the welfare of horses during transport based on severity, duration and frequency of occurrence: gastro-enteric disorders, handling stress, heat stress, injuries, isolation stress, motion stress, prolonged hunger, prolonged thirst, respiratory disorders, resting problems, restriction of movement, sensory overstimulation and separation stress. These welfare consequences and their animal-based measures are described. A variety of hazards were identified related to factors such as inexperienced/untrained handlers, lack of horse training, structural deficiencies of vehicles/facilities, poor driving skills/conditions, horse separation/regrouping, unfavourable microclimatic and environmental conditions and poor husbandry practices. The opinion contains general and specific conclusions in relation to the different stages of transport. Recommendations to prevent hazards and correct or mitigate welfare consequences have been developed. Recommendations were also developed to define quantitative thresholds for microclimatic conditions within the means of transport and for space allowance. The development of welfare consequences over time was assessed in relation to maximum journey time.

6.
EFSA J ; 20(9): e07445, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36092763

RESUMO

In the framework of its Farm to Fork Strategy, the Commission is undertaking a comprehensive evaluation of the animal welfare legislation. The present Opinion deals with protection of pigs during transport. The welfare of pigs during transport by road is the main focus, but other means of transport are also covered. Current practices related to transport of pigs during the different stages (preparation, loading/unloading, transit and journey breaks) are described. Overall, 10 welfare consequences were identified as highly relevant for the welfare of pigs during transport based on the severity, duration and frequency of occurrence: group stress, handling stress, heat stress, injuries, motion stress, prolonged hunger, prolonged thirst, restriction of movement, resting problems and sensory overstimulation. These welfare consequences and their animal-based measures are described. A variety of hazards were identified, mainly relating to factors such as mixing of unfamiliar pigs, inappropriate handling methods and devices, the use of pick-up pens, inexperienced/untrained handlers, structural deficiencies of vehicles and facilities, poor driving conditions, unfavourable microclimatic and environmental conditions and poor husbandry practices leading to these welfare consequences. The Opinion contains general and specific conclusions relating to the different stages of transport of pigs. Recommendations to prevent hazards and to correct or mitigate welfare consequences are made. Recommendations were also developed to define quantitative thresholds for microclimatic conditions and minimum space allowance within means of transport. The development of the welfare consequences over time was assessed in relation to maximum journey duration. The Opinion covers specific animal transport scenarios identified by the European Commission relating to transport of cull sows and 'special health status animals', and lists welfare concerns associated with these.

7.
EFSA J ; 20(9): e07404, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36092764

RESUMO

In the framework of its Farm to Fork Strategy, the Commission is undertaking a comprehensive evaluation of animal welfare legislation. The present Opinion deals with the protection of small ruminants (sheep and goats) during transport. The main focus is on welfare of sheep during transport by road but other means of transport and concerns for welfare of goats during transport are also covered. Current practices related to transport of sheep during the different stages (preparation, loading and unloading, transit and journey breaks) are described. Overall, 11 welfare consequences were identified as being highly relevant for the welfare of sheep during transport based on severity, duration and frequency of occurrence: group stress, handling stress, heat stress, injuries, motion stress, predation stress, prolonged hunger, prolonged thirst, restriction of movement, resting problems and sensory overstimulation. These welfare consequences and their animal-based measures are described. A wide variety of hazards, mainly relating to inappropriate or aggressive handling of animals, structural deficiencies of vehicles and facilities, unfavourable microclimatic and environmental conditions and poor husbandry practices, leading to these welfare consequences were identified. The Opinion contains general and specific conclusions in relation to the different stages of transport. Recommendations to prevent hazards and to correct or mitigate welfare consequences have been developed. Recommendations were also developed to define quantitative thresholds for microclimatic conditions within the means of transport and spatial thresholds (minimum space allowance). The development of welfare consequences over time were assessed in relation to maximum journey time. The Opinion covers specific animal transport scenarios identified by the European Commission relating to the export of sheep by livestock vessels, export of sheep by road, roll-on-roll-off vessels and 'special health status animals', and lists welfare concerns associated with these.

8.
EFSA J ; 20(9): e07442, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36092766

RESUMO

In the framework of its Farm to Fork Strategy, the Commission is undertaking a comprehensive evaluation of the animal welfare legislation. The present Opinion deals with protection of cattle (including calves) during transport. Welfare of cattle during transport by road is the main focus, but other means of transport are also covered. Current practices related to transport of cattle during the different stages (preparation, loading/unloading, transit and journey breaks) are described. Overall, 11 welfare consequences were identified as being highly relevant for the welfare of cattle during transport based on severity, duration and frequency of occurrence: group stress, handling stress, heat stress, injuries, motion stress, prolonged hunger, prolonged thirst, respiratory disorders, restriction of movement, resting problems and sensory overstimulation. These welfare consequences and their animal-based measures are described. A variety of hazards, mainly relating to inexperienced/untrained handlers, inappropriate handling, structural deficiencies of vehicles and facilities, poor driving conditions, unfavourable microclimatic and environmental conditions, and poor husbandry practices leading to these welfare consequences were identified. The Opinion contains general and specific conclusions relating to the different stages of transport for cattle. Recommendations to prevent hazards and to correct or mitigate welfare consequences have been developed. Recommendations were also developed to define quantitative thresholds for microclimatic conditions within the means of transport and spatial thresholds (minimum space allowance). The development of welfare consequences over time was assessed in relation to maximum journey duration. The Opinion covers specific animal transport scenarios identified by the European Commission relating to transport of unweaned calves, cull cows, the export of cattle by livestock vessels, the export of cattle by road, roll-on-roll-off ferries and 'special health status animals', and lists welfare concerns associated with these.

9.
EFSA J ; 20(5): e07290, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35515335

RESUMO

This report provides a descriptive analysis of the African swine fever (ASF) Genotype II epidemic in the affected Member States in the EU and two neighbouring countries for the period from 1 September 2020 to 31 August 2021. ASF continued to spread in wild boar in the EU, it entered Germany in September 2020, while Belgium became free from ASF in October 2020. No ASF outbreaks in domestic pigs nor cases in wild boar have been reported in Greece since February 2020. In the Baltic States, overall, there has been a declining trend in proportions of polymerase chain reaction (PCR)-positive samples from wild boar carcasses in the last few years. In the other countries, the proportions of PCR-positive wild boar carcasses remained high, indicating continuing spread of the disease. A systematic literature review revealed that the risk factors most frequently significantly associated with ASF in domestic pigs were pig density, low levels of biosecurity and socio-economic factors. For wild boar, most significant risk factors were related to habitat, socio-economic factors and wild boar management. The effectiveness of different control options in the so-named white zones, areas where wild boar densities have been drastically reduced to avoid further spread of ASF after a new introduction, was assessed with a stochastic model. Important findings were that establishing a white zone is much more challenging when the area of ASF incursion is adjacent to an area where limited control measures are in place. Very stringent wild boar population reduction measures in the white zone are key to success. The white zone needs to be far enough away from the affected core area so that the population can be reduced in time before the disease arrives and the timing of this will depend on the wild boar density and the required population reduction target in the white zone. Finally, establishing a proactive white zone along the demarcation line of an affected area requires higher culling efforts, but has a higher chance of success to stop the spread of the disease than establishing reactive white zones after the disease has already entered in the area.

10.
Zoonoses Public Health ; 69(4): 286-294, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35092712

RESUMO

The World Organization for Animal Health (OIE) has recently developed a Wildlife Health Framework to respond to the need of members to manage the risk from emerging diseases at the animal-human-ecosystem interface. One of its objectives is to improve surveillance systems, early detection and notification of wildlife diseases. Members share information on disease occurrence by reporting through the OIE World Animal Health Information System (OIE-WAHIS-formerly known as 'WAHIS'). To evaluate the capacity of a surveillance system to detect disease events, it is important to quantify the gap between all known events and those officially notified to the OIE. This study used capture-recapture analysis to estimate the sensitivity of the OIE-WAHIS system for a OIE-listed wildlife disease by comparing information from publicly available sources to identify undetected events. This article presents a case study of the occurrence of tularemia in lagomorphs among selected North American and European countries during the period 2014-2019. First, an analysis using three data sources (OIE-WAHIS, ProMED, WHO-EIOS [Epidemic Intelligence from Open Sources]) was conducted. Subsequent analysis then explored the model integrating information from a fourth source (scientific literature collected in PubMed). Two models were built to evaluate both the sensitivity of the OIE-WAHIS using media reports (ProMED and WHO-EIOS), which is likely to represent current closer to real-time events, and published scientific data, which is more useful for retrospective analysis. Using the three-source approach, the predicted number of tularemia events was 93 (95% CI: 75-114), with an OIE-WAHIS sensitivity of 90%. In the four-source approach, the number of predicted events increased to 120 (95% CI: 99-143), dropping the sensitivity of the OIE-WAHIS to 70%. The results indicate a good sensitivity of the OIE-WAHIS system using the three-source approach, but lower sensitivity when including information from the scientific literature. Further analysis should be undertaken to identify diseases and regions for which international reporting presents a low sensitivity. This will enable evaluation and prioritization of underreported OIE-listed wildlife diseases and identify areas of focus as part of the Wildlife Health Framework. This study also highlights the need for stronger collaborations between academia and National Veterinary Services to enhance surveillance systems for notifiable diseases.


Assuntos
Doenças dos Animais , Tularemia , Animais , Animais Selvagens , Ecossistema , Saúde Global , Estudos Retrospectivos , Tularemia/epidemiologia , Tularemia/veterinária
11.
J Vet Med Educ ; 47(s1): 20-29, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33074078

RESUMO

The World Organisation for Animal Health (OIE) provides the requirements needed for graduating veterinary professionals to be competent in the delivery of animal health services. However, significant differences in veterinary curricula across countries-attributable to differing animal health priorities and predominant types of veterinary practice-provide a challenge for veterinary schools to address these competencies adequately. As part of the OIE's veterinary education establishment Twinning Project activities, the College of Veterinary Medicine and Biomedical Sciences (CVMBS) of Sokoine University of Agriculture (SUA) in Tanzania undertook a curriculum mapping and gap analysis to assess the extent to which the veterinary curriculum addresses OIE's 'Day 1 Competencies' for graduating veterinarians. Results of the analysis indicated that all the OIE's Day 1 Competencies (general, specific, and advanced) are addressed to some degree by the courses present in the curriculum. However, gaps in the depth and breadth of instruction were found for a number of competencies in all three categories. These findings indicate a need for addressing the gaps in the next curriculum review. This will allow the development of a stronger curriculum that will efficiently meet the national and international animal health requirements.


Assuntos
Educação em Veterinária , Médicos Veterinários , Medicina Veterinária , Animais , Currículo , Saúde Global , Humanos , Tanzânia
12.
Sci Rep ; 9(1): 14423, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594957

RESUMO

African swine fever causes substantial economic losses in the swine industry in affected countries. Traditionally confined to Africa with only occasional incursions into other regions, ASF began spreading into Caucasian countries and Eastern Europe in 2007, followed by Western Europe and Asia in 2018. Such a dramatic change in the global epidemiology of ASF has resulted in concerns that the disease may continue to spread into disease-free regions such as the US. In this study, we estimated the risk of introduction of ASF virus into the US through smuggling of pork in air passenger luggage. Results suggest that the mean risk of ASFV introduction into the US via this route has increased by 183.33% from the risk estimated before the disease had spread into Western Europe or Asia. Most of the risk (67.68%) was associated with flights originating from China and Hong Kong, followed by the Russian Federation (26.92%). Five US airports accounted for >90% of the risk. Results here will help to inform decisions related to the design of ASF virus surveillance strategies in the US.


Assuntos
Vírus da Febre Suína Africana/patogenicidade , Febre Suína Africana/transmissão , Surtos de Doenças , Carne de Porco/virologia , África/epidemiologia , Febre Suína Africana/epidemiologia , Aeronaves , Animais , Europa (Continente) , Europa Oriental/epidemiologia , Hong Kong/epidemiologia , Humanos , Carne Vermelha/virologia , Federação Russa/epidemiologia , Suínos , Estados Unidos/epidemiologia
13.
Vet Immunol Immunopathol ; 208: 34-43, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30712790

RESUMO

African swine fever virus (ASFV) causes serious disease in domestic pigs for which there is no vaccine currently available. ASFV is a large DNA virus that encodes for more than 150 proteins, thus making the identification of viral antigens that induce a protective immune response difficult. Based on the functional roles of several ASFV proteins found in previous studies, we selected combinations of ASFV recombinant proteins and pcDNAs-expressing ASFV genes, to analyze their ability to induce humoral and cellular immune responses in pigs. Pigs were immunized using a modified prime-boost approach with combinations of previously selected viral DNA and proteins, resulting in induction of antibodies and specific cell-mediated immune response, measured by IFN-γ ELISpots. The ability of antibodies from pigs immunized with various combinations of ASFV-specific antigens to neutralize infection in vitro, and antigen-specific activation of the cellular immune response were analyzed.


Assuntos
Febre Suína Africana/prevenção & controle , DNA Viral/imunologia , Proteínas Virais/imunologia , Vacinas Virais/imunologia , Febre Suína Africana/imunologia , Vírus da Febre Suína Africana , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , DNA Viral/administração & dosagem , ELISPOT , Imunidade Celular , Interferon gama/imunologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Sus scrofa , Suínos , Proteínas Virais/administração & dosagem , Vacinas Virais/administração & dosagem
14.
Vaccines (Basel) ; 7(1)2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30696015

RESUMO

African swine fever virus (ASFV) causes high morbidity and mortality in swine (Sus scrofa), for which there is no commercially available vaccine. Recent outbreaks of the virus in Trans-Caucasus countries, Eastern Europe, Belgium and China highlight the urgent need to develop effective vaccines against ASFV. Previously, we evaluated the immunogenicity of a vaccination strategy designed to test various combinations of ASFV antigens encoded by DNA plasmids and recombinant proteins with the aim to activate both humoral and cellular immunity. Based on our previous results, the objective of this study was to test the combined DNA-protein vaccine strategy using a cocktail of the most immunogenic antigens against virulent ASFV challenge. Pigs were vaccinated three times with a cocktail that included ASFV plasmid DNA (CD2v, p72, p32, +/-p17) and recombinant proteins (p15, p35, p54, +/-p17). Three weeks after the third immunization, all pigs were challenged with the virulent ASFV Armenia 2007 strain. The results showed that vaccinated pigs were not protected from ASFV infection or disease. Compared to the non-vaccinated controls, earlier onset of clinical signs, viremia, and death were observed for the vaccinated animals following virulent ASFV challenge. ASFV induced pathology was also enhanced in the vaccinated pigs. Furthermore, while the vaccinated pigs developed antigen-specific antibodies, immunized pig sera at the time of challenge lacked the capacity to neutralize virus, and instead was observed to enhance ASFV infection in vitro. The results of this work points to a putative immune enhancement mechanism involved in ASFV pathogenesis that warrants further investigation. This pilot study provides insight for the selection of appropriate combinations of ASFV antigens for the development of a rationally-designed, safe, and efficacious vaccine for ASF.

15.
Transbound Emerg Dis ; 66(1): 166-180, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30126055

RESUMO

On average 8,000 pork derived products are annually confiscated by Customs and Border Protection at the United States (US) ports of entry such as international airports, harbours or mail offices. These swine products with unknown sanitary status could pose a risk for foreign animal diseases introduction into the US. This study aimed at analysing the risk of African swine fever virus (ASFV) and classical swine fever virus (CSFV) being introduced into the US through prohibited swine products carried by air passengers (PSPAP) and identifying locations and time periods at higher risk where and when preventive and mitigation measures should be implemented. Our results estimated that the risk for CSFV entry was seven times higher and further spread between US airports than for ASFV. Specifically, the overall mean annual probability of ASFV entry was estimated as 0.061 at 95% confidence interval (CI) [0.007, 0.216] while the probability of CSFV entry was estimated as 0.414 (95% CI [0.074, 1]). For both diseases, July and May were the months at highest risk for entry. For ASFV, the origin countries of those PSPAP that represented the highest risk (above 70% of the total risk) were Ghana, Cape Verde, Ethiopia and the Russian Federation, while for CSFV above 90% of the risk at origin was concentrated in the Dominican Republic and Cuba, followed by India, Colombia, Peru, Ecuador and China. These results could be used to implement and feed real time surveillance systems, which could potentially help customs to increase the detection rate of smuggled products, indicating when and where to look for them. Similarly, these systems could be adapted and implemented to other diseases improving the cost-effectiveness of the resources invested in preventing entrance of diseases via air passengers' luggage.


Assuntos
Febre Suína Africana/transmissão , Viagem Aérea , Peste Suína Clássica/transmissão , Produtos da Carne/virologia , Carne Vermelha/virologia , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/fisiologia , Viagem Aérea/estatística & dados numéricos , Animais , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/fisiologia , Probabilidade , Suínos , Doença Relacionada a Viagens , Estados Unidos
17.
PLoS One ; 12(8): e0182850, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28797058

RESUMO

The US livestock safety strongly depends on its capacity to prevent the introduction of Transboundary Animal Diseases (TADs). Therefore, accurate and updated information on the location and origin of those potential TADs risks is essential, so preventive measures as market restrictions can be put on place. The objective of the present study was to evaluate the current risk of African swine fever (ASF) and Classical swine fever (CSF) introduction into the US through the legal importations of live pigs and swine products using a quantitative approach that could be later applied to other risks. Four quantitative stochastic risk assessment models were developed to estimate the monthly probabilities of ASF and CSF release into the US, and the exposure of susceptible populations (domestic and feral swine) to these introductions at state level. The results suggest a low annual probability of either ASF or CSF introduction into the US, by any of the analyzed pathways (5.5*10-3). Being the probability of introduction through legal imports of live pigs (1.8*10-3 for ASF, and 2.5*10-3 for CSF) higher than the risk of legally imported swine products (8.90*10-4 for ASF, and 1.56*10-3 for CSF). This could be caused due to the low probability of exposure associated with this type of commodity (products). The risk of feral pigs accessing to swine products discarded in landfills was slightly higher than the potential exposure of domestic pigs through swill feeding. The identification of the months at highest risk, the origin of the higher risk imports, and the location of the US states most vulnerable to those introductions (Iowa, Minnesota and Wisconsin for live swine and California, Florida and Texas for swine products), is valuable information that would help to design prevention, risk-mitigation and early-detection strategies that would help to minimize the catastrophic consequences of potential ASF/CSF introductions into the US.


Assuntos
Febre Suína Africana/prevenção & controle , Peste Suína Clássica/prevenção & controle , Comércio , Febre Suína Africana/diagnóstico , Animais , Peste Suína Clássica/diagnóstico , Diagnóstico Precoce , Medição de Risco , Fatores de Risco , Suínos , Estados Unidos
18.
PLoS One ; 11(9): e0161230, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27611939

RESUMO

In the absence of effective vaccine(s), control of African swine fever caused by African swine fever virus (ASFV) must be based on early, efficient, cost-effective detection and strict control and elimination strategies. For this purpose, we developed an indirect ELISA capable of detecting ASFV antibodies in either serum or oral fluid specimens. The recombinant protein used in the ELISA was selected by comparing the early serum antibody response of ASFV-infected pigs (NHV-p68 isolate) to three major recombinant polypeptides (p30, p54, p72) using a multiplex fluorescent microbead-based immunoassay (FMIA). Non-hazardous (non-infectious) antibody-positive serum for use as plate positive controls and for the calculation of sample-to-positive (S:P) ratios was produced by inoculating pigs with a replicon particle (RP) vaccine expressing the ASFV p30 gene. The optimized ELISA detected anti-p30 antibodies in serum and/or oral fluid samples from pigs inoculated with ASFV under experimental conditions beginning 8 to 12 days post inoculation. Tests on serum (n = 200) and oral fluid (n = 200) field samples from an ASFV-free population demonstrated that the assay was highly diagnostically specific. The convenience and diagnostic utility of oral fluid sampling combined with the flexibility to test either serum or oral fluid on the same platform suggests that this assay will be highly useful under the conditions for which OIE recommends ASFV antibody surveillance, i.e., in ASFV-endemic areas and for the detection of infections with ASFV isolates of low virulence.


Assuntos
Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Ensaio de Imunoadsorção Enzimática , Fosfoproteínas/imunologia , Proteínas Virais/imunologia , Febre Suína Africana/sangue , Vírus da Febre Suína Africana/genética , Animais , Anticorpos Antivirais/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Reprodutibilidade dos Testes , Suínos
19.
BMC Vet Res ; 12: 1, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26728767

RESUMO

BACKGROUND: African swine fever (ASF) is one of the most complex viral diseases affecting both domestic and wild pigs. It is caused by ASF virus (ASFV), the only DNA virus which can be efficiently transmitted by an arthropod vector, soft ticks of the genus Ornithodoros. These ticks can be part of ASFV-transmission cycles, and in Europe, O. erraticus was shown to be responsible for long-term maintenance of ASFV in Spain and Portugal. In 2014, the disease has been reintroduced into the European Union, affecting domestic pigs and, importantly, also the Eurasian wild boar population. In a first attempt to assess the risk of a tick-wild boar transmission cycle in Central Europe that would further complicate eradication of the disease, over 700 pre-existing serum samples from wild boar hunted in four representative German Federal States were investigated for the presence of antibodies directed against salivary antigen of Ornithodoros erraticus ticks using an indirect ELISA format. RESULTS: Out of these samples, 16 reacted with moderate to high optical densities that could be indicative of tick bites in sampled wild boar. However, these samples did not show a spatial clustering (they were collected from distant geographical regions) and were of bad quality (hemolysis/impurities). Furthermore, all positive samples came from areas with suboptimal climate for soft ticks. For this reason, false positive reactions are likely. CONCLUSION: In conclusion, the study did not provide stringent evidence for soft tick-wild boar contact in the investigated German Federal States and thus, a relevant involvement in the epidemiology of ASF in German wild boar is unlikely. This fact would facilitate the eradication of ASF in the area, although other complex relations (wild boar biology and interactions with domestic pigs) need to be considered.


Assuntos
Febre Suína Africana/transmissão , Anticorpos/análise , Ornithodoros/imunologia , Sus scrofa/imunologia , Febre Suína Africana/imunologia , Vírus da Febre Suína Africana , Animais , Alemanha , Mordeduras e Picadas de Insetos/imunologia , Saliva/imunologia , Suínos
20.
Front Microbiol ; 6: 314, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25926829

RESUMO

This study assesses the relation between hypothesized risk factors and African swine fever virus (ASFV) distribution in Sardinia (Italy) after the beginning of the eradication program in 1993, using a Bayesian multivariable logistic regression mixed model. Results indicate that the probability of ASFV occurrence in Sardinia was associated to particular socio-cultural, productive and economical factors found in the region, particularly to large number of confined (i.e., closed) farms (most of them backyard), high road density, high mean altitude, large number of open fattening farms, and large number of pigs per commune. Conversely, large proportion of open farms with at least one census and large proportion of open farms per commune, were found to be protective factors for ASFV. Results suggest that basic preventive and control strategies, such as yearly census or registration of the pigs per farm and better control of the public lands where pigs are usually raised, together with endanced effords of outreach and communication with pig producers should help in the success of the eradication program for ASF in the Island. Methods and results presented here will inform decision making to better control and eradicate ASF in Sardinia and in all those areas with similar management and epidemiological conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA