Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 195(11): 6708-6736, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36913095

RESUMO

Enzymatic halogenation captures scientific interest considering its feasibility in modifying compounds for chemical diversity. Currently, majority of flavin-dependent halogenases (F-Hals) were reported from bacterial origin, and as far as we know, none from lichenized fungi. Fungi are well-known producers of halogenated compounds, so using available transcriptomic dataset of Dirinaria sp., we mined for putative gene encoding for F-Hal. Phylogenetic-based classification of the F-Hal family suggested a non-tryptophan F-Hals, similar to other fungal F-Hals, which mainly act on aromatic compounds. However, after the putative halogenase gene from Dirinaria sp., dnhal was codon-optimized, cloned, and expressed in Pichia pastoris, the ~63 kDa purified enzyme showed biocatalytic activity towards tryptophan and an aromatic compound methyl haematommate, which gave the tell-tale isotopic pattern of a chlorinated product at m/z 239.0565 and 241.0552; and m/z 243.0074 and 245.0025, respectively. This study is the start of understanding the complexities of lichenized fungal F-hals and its ability to halogenate tryptophan and other aromatic. compounds which can be used as green alternatives for biocatalysis of halogenated compounds.


Assuntos
Líquens , Oxirredutases , Oxirredutases/metabolismo , Líquens/metabolismo , Triptofano/metabolismo , Filogenia , Halogenação , Compostos Orgânicos , Flavinas/genética , Flavinas/metabolismo
2.
Int J Biol Macromol ; 222(Pt B): 2353-2367, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36209910

RESUMO

Cutinases are hydrolytic enzymes secreted by phytopathogens to degrade cutin, the main polymeric component of plant cuticles. The multifaceted functionality of cutinases has allowed for their exploitation for catalytic reactions beyond their natural purpose. To diversify and expand the cutinase enzyme class, we identified five cutinase homologs from the saprotroph Aspergillus niger. One of these cutinases, AnCUT3, was over-expressed in Pichia pastoris and its biophysicochemical properties characterized. The purified recombinant AnCUT3 possessed an optimum temperature of 25 °C, an optimum pH of 5, and was stable at temperatures up to 50 °C (1 h incubation, melting point of 45.6 °C) and in a wide pH range. Kinetic studies of AnCUT3 using pNP ester substrates showed the highest catalytic efficiency, kcat/Km of 859 mM-1 s-1 toward p-nitrophenyl decanoate (C10). Although its calculated molecular mass is 27 kDa, AnCUT3 was expressed as two glycosylated proteins of molecular weights 24 and 50 kDa. Glycan profiling detected the presence of atypical paucimannose N-glycans (≤Man1-5GlcNAc) from recombinant AnCUT3, suggesting protein-dependent glycan processing of AnCUT3 in P. pastoris. AnCUT3 was also able to degrade and modify the surface of polycaprolactone and polyethylene terephthalate. Taken together, these features poise AnCUT3 as a potential biocatalyst for industrial applications.


Assuntos
Aspergillus niger , Plásticos , Cinética , Plásticos/metabolismo , Proteínas Recombinantes/química , Concentração de Íons de Hidrogênio , Pichia/genética , Pichia/metabolismo , Temperatura , Clonagem Molecular
3.
Int J Biol Macromol ; 213: 70-82, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35644316

RESUMO

A combined strategy of computational, protein engineering and cross-linked enzyme aggregates (CLEAs) approaches was performed on Bacillus lehensis G1 maltogenic amylase (Mag1) to investigate the preferred amino acids and orientation of the cross-linker in constructing stable and efficient biocatalyst. From the computational analysis, Mag1 exhibited the highest binding affinity towards chitosan (-7.5 kcal/mol) and favours having interactions with aspartic acid whereas glutaraldehyde was the least favoured (-3.4 kcal/mol) and has preferences for lysine. A total of eight Mag1 variants were constructed with either Asp or Lys substitutions on different secondary structures surface. Mutant Mag1-mDh exhibited the highest recovery activity (82.3%) in comparison to other Mag1 variants. Mutants-CLEAs exhibited higher thermal stability (20-30% activity) at 80 °C whilst Mag1-CLEAs could only retain 9% of activity at the same temperature. Reusability analysis revealed that mutants-CLEAs can be recovered up to 8 cycles whereas Mag1-CLEAs activity could only be retained for up to 6 cycles. Thus, it is evident that amino acids on the enzyme's surface play a crucial role in the construction of highly stable, efficient and recyclable CLEAs. This demonstrates the necessity to determine the preferential amino acid by the cross-linkers in advance to facilitate CLEAs immobilisation for designing efficient biocatalysts.


Assuntos
Enzimas Imobilizadas , Engenharia de Proteínas , Aminoácidos , Reagentes de Ligações Cruzadas , Estabilidade Enzimática , Enzimas Imobilizadas/química , Glicosídeo Hidrolases , Temperatura
4.
J Biotechnol ; 329: 118-127, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33539893

RESUMO

Dehydroquinase or 3-dehydroquinate dehydratase (DHQD) reversibly cleaves 3-dehydroquinate to form 3-dehydroshikimate. Here, we describe the functional and structural features of a cold active type II 3-dehydroquinate dehydratase from the psychrophilic yeast, Glaciozyma antarctica PI12 (GaDHQD). Functional studies showed that the enzyme was active at low temperatures (10-30 °C), but displayed maximal activity at 40 °C. Yet the enzyme was stable over a wide range of temperatures (10-70 °C) and between pH 6.0-10.0 with an optimum pH of 8.0. Interestingly, the enzyme was highly thermo-tolerant, denaturing only at approximately 84 °C. Three-dimensional structure analyses showed that the G. antarctica dehydroquinase (GaDHQD) possesses psychrophilic features in comparison with its mesophilic and thermophilic counterparts such as higher numbers of non-polar residues on the surface, lower numbers of arginine and higher numbers of glycine-residues with lower numbers of hydrophobic interactions. On the other hand, GaDHQD shares some traits (i.e. total number of hydrogen bonds, number of proline residues and overall folding) with its mesophilic and thermophilic counterparts. Combined, these features contribute synergistically towards the enzyme's ability to function at both low and high temperatures.


Assuntos
Temperatura Baixa , Temperatura Alta , Sequência de Aminoácidos , Basidiomycota , Hidroliases
5.
Int J Biol Macromol ; 150: 80-89, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32035147

RESUMO

Maltooligosaccharides (MOSs) are emerging oligosaccharides in food-based applications and can be synthesized through the enzymatic synthesis of maltogenic amylase from Bacillus lehensis G1 (Mag1). However, the lack of enzyme stability makes this approach unrealistic for industrial applications. The formation of cross-linked enzyme aggregates (CLEAs) is a promising tool for improving enzyme stability, and the substrate accessibility problem of CLEA formation was overcome by the addition of porous agents to generate porous CLEAs (p-CLEAs). However, p-CLEAs exhibited high enzyme leaching and low solvent tolerance. To address these problems, p-CLEAs of Mag1 (Mag1-p-CLEAs) were entrapped in calcium alginate beads (CA). Mag1-p-CLEAs-CA prepared with 2.5% (w/v) sodium alginate and 0.6% (w/v) calcium chloride yielded 53.16% (17.0 U/mg) activity and showed a lower deactivation rate and longer half-life than those of entrapped free Mag1 (Mag1-CA) and entrapped non-porous Mag1-CLEAs (Mag1-CLEAs-CA). Moreover, Mag1-p-CLEAs-CA exhibited low enzyme leaching and high tolerance in various solvents compared to Mag1-p-CLEAs. A kinetic study revealed that Mag1-p-CLEAs-CA exhibited relatively high affinity towards beta-cyclodextrin (ß-CD) (Km = 0.62 mM). MOSs (300 mg/g) were synthesized by Mag1-p-CLEAs-CA at 50 °C. Finally, the reusability of Mag1-p-CLEAs-CA makes them as a potential biocatalyst for the continuous synthesis of MOSs.


Assuntos
Alginatos/metabolismo , Bacillus/metabolismo , Enzimas Imobilizadas , Glicosídeo Hidrolases/metabolismo , Oligossacarídeos/biossíntese , Alginatos/química , Bacillus/enzimologia , Reagentes de Ligações Cruzadas , Estabilidade Enzimática , Glicosídeo Hidrolases/química , Hidrólise , Cinética , Oligossacarídeos/química , Porosidade , Agregados Proteicos , Solventes , Temperatura
6.
Int J Biol Macromol ; 144: 231-241, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31843615

RESUMO

Genome data mining of the Antarctic yeast, Glaciozyma antarctica PI12 revealed an expansin-like protein encoding sequence (GaEXLX1). The GaEXLX1 protein is 24.8 kDa with a high alkaline pI of 9.81. Homology modeling of GaEXLX1 showed complete D1 and D2 domains of a conventional expansin. The protein exhibited 36% sequence similarity to Clavibacter michiganensis EXLX1 (PDB: 4JCW). Subsequently, a recombinant GaEXLX1 protein was produced using Escherichia coli expression system. Incubation with Avicel, filter paper and cotton fiber showed that the protein can disrupt the surface of crystalline and pure cellulose, suggesting a cell wall modification activity usually exhibited by expansin-like proteins. Binding assays displayed that GaEXLX1 can bind to polymeric substrates, including those postulated to be present in the sea ice ecosystem such as crab chitin and moss lichenan. GaEXLX1 may assist in the recognition and loosening of these substrates in the sea ice prior to hydrolysis by other extracellular enzymes. Similar loosening mechanism to classical expansin-like protein has been postulated for this psychrophilic protein based on several conserved residues of GaEXLX1 involved in binding interaction identified by docking analyses.


Assuntos
Basidiomycota/metabolismo , Proteínas Fúngicas/metabolismo , Simulação de Acoplamento Molecular , Nutrientes/metabolismo , Sequência de Aminoácidos , Regiões Antárticas , Parede Celular/metabolismo , Celulose/química , Ecossistema , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/química , Camada de Gelo , Simulação de Dinâmica Molecular , Filogenia , Proteínas Recombinantes , Alinhamento de Sequência
7.
Enzyme Microb Technol ; 131: 109383, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31615675

RESUMO

Enzyme hydrolysis faces a bottleneck due to the recalcitrance of the lignocellulose biomass. The protein engineering of GH11 xylanase from Aspergillus fumigatus RT-1 was performed near the active site and at the N-terminal region to improve its catalytic efficiency towards pretreated kenaf (Hibiscus cannabinus) hydrolysis. Five mutants were constructed by combined approaches of error-prone PCR, site-saturation and site-directed mutagenesis. The double mutant c168 t/Q192H showed the most effective hydrolysis reaction with a 13.9-fold increase in catalytic efficiency, followed by mutants Y7L and c168 t/Q192 H/Y7L with a 1.6-fold increase, respectively. The enhanced catalytic efficiency evoked an increase in sugar yield of up to 28% from pretreated kenaf. In addition, mutant c168 t/Q192 H/Y7L improved the thermostability at higher temperature and acid stability. This finding shows that mutations at distances less than 15 Šfrom the active site and at putative secondary binding sites affect xylanase catalytic efficiency towards insoluble substrates hydrolysis.


Assuntos
Aspergillus fumigatus/enzimologia , Hibiscus/metabolismo , Engenharia de Proteínas , Xilosidases/genética , Xilosidases/metabolismo , Biomassa , Domínio Catalítico , Hidrólise , Mutagênese , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo
8.
BMC Genomics ; 20(1): 627, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31370802

RESUMO

Following publication of the original article [1], the authors reported a number of errors, which are listed in this Correction article. The corrections are marked in bold.

9.
BMC Genomics ; 20(1): 586, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311515

RESUMO

BACKGROUND: Persicaria minor (kesum) is an herbaceous plant with a high level of secondary metabolite compounds, particularly terpenoids. These terpenoid compounds have well-established roles in the pharmaceutical and food industries. Although the terpenoids of P. minor have been studied thoroughly, the involvement of microRNA (miRNA) in terpenoid regulation remains poorly understood and needs to be explored. In this study, P. minor plants were inoculated with the pathogenic fungus Fusarium oxysporum for terpenoid induction. RESULT: SPME GC-MS analysis showed the highest terpenoid accumulation on the 6th day post-inoculation (dpi) compared to the other treatment time points (0 dpi, 3 dpi, and 9 dpi). Among the increased terpenoid compounds, α-cedrene, valencene and ß-bisabolene were prominent. P. minor inoculated for 6 days was selected for miRNA library construction using next generation sequencing. Differential gene expression analysis showed that 58 miRNAs belonging to 30 families had significantly altered regulation. Among these 58 differentially expressed genes (DEGs), 27 [corrected] miRNAs were upregulated, whereas 31 [corrected] miRNAs were downregulated. Two putative novel pre-miRNAs were identified and validated through reverse transcriptase PCR. Prediction of target transcripts potentially involved in the mevalonate pathway (MVA) was carried out by psRobot software, resulting in four miRNAs: pmi-miR530, pmi-miR6173, pmi-miR6300 and a novel miRNA, pmi-Nov_13. In addition, two miRNAs, miR396a and miR398f/g, were predicted to have their target transcripts in the non-mevalonate pathway (MEP). In addition, a novel miRNA, pmi-Nov_12, was identified to have a target gene involved in green leaf volatile (GLV) biosynthesis. RT-qPCR analysis showed that pmi-miR6173, pmi-miR6300 and pmi-nov_13 were downregulated, while miR396a and miR398f/g were upregulated. Pmi-miR530 showed upregulation at 9 dpi, and dynamic expression was observed for pmi-nov_12. Pmi-6300 and pmi-miR396a cleavage sites were detected through degradome sequence analysis. Furthermore, the relationship between miRNA metabolites and mRNA metabolites was validated using correlation analysis. CONCLUSION: Our findings suggest that six studied miRNAs post-transcriptionally regulate terpenoid biosynthesis in P. minor. This regulatory behaviour of miRNAs has potential as a genetic tool to regulate terpenoid biosynthesis in P. minor.


Assuntos
Fusarium/fisiologia , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Polygonaceae/metabolismo , Polygonaceae/microbiologia , RNA de Plantas/genética , Terpenos/metabolismo , Biblioteca Gênica , Análise de Sequência de RNA , Transcriptoma
10.
Protein Expr Purif ; 154: 52-61, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30261309

RESUMO

Cellobiohydrolases catalyze the processive hydrolysis of cellulose into cellobiose. Here, a Trichoderma virens cDNA predicted to encode for cellobiohydrolase (cbhI) was cloned and expressed heterologously in Aspergillus niger. The cbhI gene has an open reading frame of 1518 bp, encoding for a putative protein of 505 amino acid residues with a calculated molecular mass of approximately 54 kDa. The predicted CbhI amino acid sequence has a fungal type carbohydrate binding module separated from a catalytic domain by a threonine rich linker region and showed high sequence homology with glycoside hydrolase family 7 proteins. The partially purified enzyme has an optimum pH of 4.0 with stability ranging from pH 3.0 to 6.0 and an optimum temperature of 60 °C. The partially purified CbhI has a specific activity of 4.195 Umg-1 and a low Km value of 1.88 mM when p-nitrophenyl-ß-D-cellobioside (pNPC) is used as the substrate. The catalytic efficiency (kcat/Km) was 5.68 × 10-4 mM-1s-1, which is comparable to the CbhI enzymes from Trichoderma viridae and Phanaerochaete chrysosporium. CbhI also showed activity towards complex substrates such as Avicel (0.011 Umg-1), which could be useful in complex biomass degradation. Interestingly, CbhI also exhibited a relatively high inhibition constant (Ki) for cellobiose with a value of 8.65 mM, making this enzyme more resistant to end-product inhibition compared to other fungal cellobiohydrolases.


Assuntos
Celulose 1,4-beta-Celobiosidase , Proteínas Fúngicas , Trichoderma , Aspergillus niger/enzimologia , Aspergillus niger/genética , Celulose 1,4-beta-Celobiosidase/biossíntese , Celulose 1,4-beta-Celobiosidase/química , Celulose 1,4-beta-Celobiosidase/genética , Celulose 1,4-beta-Celobiosidase/isolamento & purificação , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Trichoderma/enzimologia , Trichoderma/genética
11.
Data Brief ; 20: 555-557, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30197911

RESUMO

Degradome sequencing referred as parallel analysis of RNA ends (PARE) by modifying 5'-rapid amplification of cDNA ends (RACE) with deep sequencing method. Deep sequencing of 5' products allow the determination of cleavage sites through the mapping of degradome fragments against small RNAs (miRNA or siRNA) on a large scale. Here, we carried out degradome sequencing in medicinal plant, Persicaria minor, to identify cleavage sites in small RNA libraries in control (mock-inoculated) and Fusarium oxysporum treated plants. The degradome library consisted of both control and treated samples which were pooled together during library preparation and named as D4. The D4 dataset have been deposited at GenBank under accession number SRX3921398, https://www.ncbi.nlm.nih.gov/sra/SRX3921398.

12.
Microbiol Res ; 215: 46-54, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30172308

RESUMO

Bacillus lehensis G1 is an alkaliphilic bacterium that is capable of surviving in environments up to pH 11. Secretome related to bacterial acclimation in alkaline environment has been less studied compared to cytoplasmic and membrane proteome. The aim of this study was to gain better understanding of bacterial acclimation to alkaline media through analyzing extracellular proteins of B. lehensis. The pH range for B. lehensis growth was conducted, and two-dimensional electrophoresis and MALDI-TOF/TOF MS analysis were conducted to characterize changes in protein profiling in B. lehensis cultured at pH 8 and pH 11 when compared with those cultured at pH 10 (optimal growth pH). B. lehensis could grow well at pH ranging from 8 to 11 in which the bacteria showed to posses thinner flagella at pH 11. Proteomic analyses demonstrated that five proteins were up-regulated and 13 proteins were down-regulated at pH 8, whereas at pH 11, 14 proteins were up-regulated and 8 were down-regulated. Majority of the differentially expressed proteins were involved in the cell wall, main glycolytic pathways, the metabolism of amino acids and related molecules and some proteins of unknown function. A total of 40 differentially expressed protein spots corresponding to 33 proteins were identified; including GlcNAc-binding protein A, chitinase, endopeptidase lytE, flagellar hook-associated proteins and enolase. These proteins may play important roles in acclimation to alkaline media via reallocation of cell wall structure and changes to cell surface glycolytic enzymes, amino acid metabolism, flagellar hook-associated proteins and chaperones to sustain life under pH-stressed conditions.


Assuntos
Aclimatação/fisiologia , Bacillus/metabolismo , Proteínas de Bactérias/metabolismo , Aminoácidos/metabolismo , Bacillus/citologia , Bacillus/crescimento & desenvolvimento , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Quimiotaxia , Citoplasma/metabolismo , Flagelos , Regulação Bacteriana da Expressão Gênica , Concentração de Íons de Hidrogênio , Dobramento de Proteína , Proteoma/metabolismo , Proteômica/métodos , Regulação para Cima
13.
Data Brief ; 17: 1108-1111, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29876468

RESUMO

Ganoderma boninense is known to be the causal agent for basal stem rot (BSR) affecting the oil palm industry worldwide thus cumulating to high economic losses every year. Several reports have shown that a compatible monokaryon pair needs to mate; producing dikaryotic mycelia to initiate the infection towards the oil palm. However, the molecular events occurs during mating process are not well understood. We performed transcriptome sequencing using Illumina RNA-seq technology and de novo assembly of the transcripts from monokaryon, mating junction and dikaryon mycelia of G. boninense. Raw reads from these three libraries were deposited in the NCBI database with accession number SRR1745787, SRR1745773 and SRR1745777, respectively.

14.
Extremophiles ; 22(4): 607-616, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29556723

RESUMO

Dienelactone hydrolase, an α/ß hydrolase enzyme, catalyzes the hydrolysis of dienelactone to maleylacetate, an intermediate for the Krebs cycle. Genome sequencing of the psychrophilic yeast, Glaciozyma antarctica predicted a putative open reading frame (ORF) for dienelactone hydrolase (GaDlh) with 52% sequence similarity to that from Coniophora puteana. Phylogenetic tree analysis showed that GaDlh is closely related to other reported dienelactone hydrolases, and distantly related to other α/ß hydrolases. Structural prediction using MODELLER 9.14 showed that GaDlh has the same α/ß hydrolase fold as other dienelactone hydrolases and esterase/lipase enzymes, with a catalytic triad consisting of Cys-His-Asp and a G-x-C-x-G-G motif. Based on the predicted structure, GaDlh exhibits several characteristics of cold-adapted proteins such as glycine clustering in the binding pocket, reduced protein core hydrophobicity, and the absence of proline residues in loops. The putative ORF was amplified, cloned, and overexpressed in an Escherichia coli expression system. The recombinant protein was overexpressed as soluble proteins and was purified via Ni-NTA affinity chromatography. Biochemical characterization of GaDlh revealed that it has an optimal temperature at 10 °C and that it retained almost 90% of its residual activity when incubated for 90 min at 10 °C. The optimal pH was at pH 8.0 and it was stable between pH 5-9 when incubated for 60 min (more than 50% residual activity). Its Km value was 256 µM and its catalytic efficiency was 81.7 s-1. To our knowledge, this is the first report describing a novel cold-active dienelactone hydrolase-like protein.


Assuntos
Basidiomycota/enzimologia , Temperatura Baixa , Esterases/química , Lactonas/metabolismo , Aclimatação , Basidiomycota/genética , Esterases/genética , Esterases/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Domínios Proteicos
15.
3 Biotech ; 8(3): 136, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29479512

RESUMO

In current era, majority of microRNA (miRNA) are being discovered through computational approaches which are more confined towards model plants. Here, for the first time, we have described the identification and characterization of novel miRNA in a non-model plant, Persicaria minor (P. minor) using computational approach. Unannotated sequences from deep sequencing were analyzed based on previous well-established parameters. Around 24 putative novel miRNAs were identified from 6,417,780 reads of the unannotated sequence which represented 11 unique putative miRNA sequences. PsRobot target prediction tool was deployed to identify the target transcripts of putative novel miRNAs. Most of the predicted target transcripts (mRNAs) were known to be involved in plant development and stress responses. Gene ontology showed that majority of the putative novel miRNA targets involved in cellular component (69.07%), followed by molecular function (30.08%) and biological process (0.85%). Out of 11 unique putative miRNAs, 7 miRNAs were validated through semi-quantitative PCR. These novel miRNAs discoveries in P. minor may develop and update the current public miRNA database.

16.
PeerJ ; 5: e3909, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29038760

RESUMO

BACKGROUND: Aspergillus niger, along with many other lignocellulolytic fungi, has been widely used as a commercial workhorse for cellulase production. A fungal cellulase system generally includes three major classes of enzymes i.e., ß-glucosidases, endoglucanases and cellobiohydrolases. Cellobiohydrolases (CBH) are vital to the degradation of crystalline cellulose present in lignocellulosic biomass. However, A. niger naturally secretes low levels of CBH. Hence, recombinant production of A. niger CBH is desirable to increase CBH production yield and also to allow biochemical characterisation of the recombinant CBH from A. niger. METHODS: In this study, the gene encoding a cellobiohydrolase B (cbhB) from A. niger ATCC 10574 was cloned and expressed in the methylotrophic yeast Pichia pastoris X-33. The recombinant CBHB was purified and characterised to study its biochemical and kinetic characteristics. To evaluate the potential of CBHB in assisting biomass conversion, CBHB was supplemented into a commercial cellulase preparation (Cellic® CTec2) and was used to hydrolyse oil palm empty fruit bunch (OPEFB), one of the most abundant lignocellulosic waste from the palm oil industry. To attain maximum saccharification, enzyme loadings were optimised by response surface methodology and the optimum point was validated experimentally. Hydrolysed OPEFB samples were analysed using attenuated total reflectance FTIR spectroscopy (ATR-FTIR) to screen for any compositional changes upon enzymatic treatment. RESULTS: Recombinant CBHB was over-expressed as a hyperglycosylated protein attached to N-glycans. CBHB was enzymatically active towards soluble substrates such as 4-methylumbelliferyl-ß-D-cellobioside (MUC), p-nitrophenyl-cellobioside (pNPC) and p-nitrophenyl-cellobiotrioside (pNPG3) but was not active towards crystalline substrates like Avicel® and Sigmacell cellulose. Characterisation of purified CBHB using MUC as the model substrate revealed that optimum catalysis occurred at 50 °C and pH 4 but the enzyme was stable between pH 3 to 10 and 30 to 80 °C. Although CBHB on its own was unable to digest crystalline substrates, supplementation of CBHB (0.37%) with Cellic® CTec2 (30%) increased saccharification of OPEFB by 27%. Compositional analyses of the treated OPEFB samples revealed that CBHB supplementation reduced peak intensities of both crystalline cellulose Iα and Iß in the treated OPEFB samples. DISCUSSION: Since CBHB alone was inactive against crystalline cellulose, these data suggested that it might work synergistically with other components of Cellic® CTec2. CBHB supplements were desirable as they further increased hydrolysis of OPEFB when the performance of Cellic® CTec2 was theoretically capped at an enzyme loading of 34% in this study. Hence, A. niger CBHB was identified as a potential supplementary enzyme for the enzymatic hydrolysis of OPEFB.

17.
Data Brief ; 14: 35-40, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28761915

RESUMO

Bacillus lehensis G1 is a cyclodextrin glucanotransferase (CGTase) producer, which can degrade starch into cyclodextrin. Here, we present the proteomics data of B. lehensis cultured in starch-containing medium, which is related to the article "Proteome-based identification of signal peptides for improved secretion of recombinant cyclomaltodextrin glucanotransferase in Escherichia coli" (Ling et. al, in press). This dataset was generated to better understand the secretion of proteins involved in starch utilization for bacterial sustained growth. A 2-DE proteomic technique was used and the proteins were tryptically digested followed by detection using MALDI-TOF/TOF. Proteins were classified into functional groups using the information available in SubtiList webserver (http://genolist.pasteur.fr/SubtiList/).

18.
Genom Data ; 13: 3-4, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28560169

RESUMO

Persicaria minor (kesum) is an important medicinal plant and commonly found in southeast countries; Malaysia, Thailand, Indonesia, and Vietnam. This plant is enriched with a variety of secondary metabolites (SMs), and among these SMs, terpenoids are in high abundance. Terpenoids are comprised of many valuable biomolecules which have well-established role in agriculture and pharmaceutical industry. In P. minor, for the first time, we have generated small RNAs data sets, which can be used as tool in deciphering their roles in terpenoid biosynthesis pathways. Fungal pathogen, Fusarium oxysporum was used as elicitor to trigger SMs biosynthesis in P. minor. Raw reads and small RNA analysis data have already been deposited at GenBank under the accessions; SRX2645684 (Fusarium-treated), SRX2645685 (Fusarium-treated), SRX2645686 (mock-infected), and SRX2645687 (mock-infected).

19.
J Biochem ; 161(2): 167-186, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28175318

RESUMO

The effectiveness of ß-lactam antibiotics as chemotherapeutic agents to treat bacterial infections is gradually threatened with the emergence of antibiotic resistance mechanism among pathogenic bacteria through the production metallo-ß-lactamase (MBL). In this study, we discovered a novel hypothetical protein (HP) termed Bleg1_2437 from the genome of alkaliphilic Bacillus lehensis G1 which exhibited MBL-like properties of B3 subclass; but evolutionary divergent from other circulating B3 MBLs. Domain and sequence analysis of HP Bleg1_2437 revealed that it contains highly conserved Zn2+-binding residues such as H54, H56, D58, H59, H131 and H191, important for catalysis, similar with the subclass B3 of MBL. Built 3-D Bleg1_2437 structure exhibited an αßßα sandwich layer similar to the well-conserved global topology of MBL superfamily. Other features include a ceiling and floor in the model which are important for accommodation and orientation of ß-lactam antibiotics docked to the protein model showed interactions at varying degrees with residues in the binding pocket of Bleg1_2437. Hydrolysis activity towards several ß-lactam antibiotics was proven through an in vitro assay using purified recombinant Bleg1_2437 protein. These findings highlight the presence of a clinically important and evolutionary divergent antibiotics-degrading enzyme within the pools of uncharacterized HPs.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Bacillus/efeitos dos fármacos , Bacillus/genética , Bacillus/metabolismo , Proteínas de Bactérias/isolamento & purificação , Conformação Proteica , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/química , beta-Lactamases/isolamento & purificação
20.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 11): 831-839, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27827354

RESUMO

Fuculose-1-phosphate aldolase (FucA) catalyses the reversible cleavage of L-fuculose 1-phosphate to dihydroxyacetone phosphate (DHAP) and L-lactaldehyde. This enzyme from mesophiles and thermophiles has been extensively studied; however, there is no report on this enzyme from a psychrophile. In this study, the gene encoding FucA from Glaciozyma antarctica PI12 (GaFucA) was cloned and the enzyme was overexpressed in Escherichia coli, purified and crystallized. The tetrameric structure of GaFucA was determined to 1.34 Šresolution. The overall architecture of GaFucA and its catalytically essential histidine triad are highly conserved among other fuculose aldolases. Comparisons of structural features between GaFucA and its mesophilic and thermophilic homologues revealed that the enzyme has typical psychrophilic attributes, indicated by the presence of a high number of nonpolar residues at the surface and a lower number of arginine residues.


Assuntos
Aldeído Liases/química , Fosfato de Di-Hidroxiacetona/química , Proteínas Fúngicas/química , Hexosefosfatos/química , Saccharomycetales/química , Aldeído Liases/genética , Aldeído Liases/metabolismo , Sequência de Aminoácidos , Regiões Antárticas , Sítios de Ligação , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Fosfato de Di-Hidroxiacetona/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Hexosefosfatos/metabolismo , Modelos Moleculares , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales/enzimologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA