Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(1): 108708, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38226155

RESUMO

Extracellular vesicles (EVs) are entering the clinical arena as novel biologics for infectious diseases, potentially serving as the immunogenic components of next generation vaccines. However, relevant human assays to evaluate the immunogenicity of EVs carrying viral antigens are lacking, contributing to challenges in translating rodent studies to human clinical trials. Here, we engineered EVs to carry SARS-CoV-2 Spike to evaluate the immunogenicity of antigen-carrying EVs using human peripheral blood mononuclear cells (PBMCs). Delivery of Spike EVs to PBMCs resulted in specific immune cell activation as assessed through T cell activation marker expression. Further, Spike EVs were taken up largely by antigen-presenting cells (monocytes, dendritic cells and B cells). Taken together, this human PBMC-based system models physiologically relevant pathways of antigen delivery, uptake and presentation. In summary, the current study highlights the suitability of using human PBMCs for evaluating the immunogenicity of EVs engineered to carry antigens for infectious disease therapeutics.

2.
J Extracell Vesicles ; 12(12): e12387, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38054534

RESUMO

Natural killer cell-derived extracellular vesicles (NK-EVs) have shown promising potential as biotherapeutics for cancer due to their unique attributes as cytotoxic nanovesicles against cancer cells and immune-modulatory activity towards immune cells. However, a biomanufacturing workflow is needed to produce clinical-grade NK-EVs for pre-clinical and clinical applications. This study established a novel biomanufacturing workflow using a closed-loop hollow-fibre bioreactor to continuously produce NK-EVs from the clinically relevant NK92-MI cell line under serum-free, Xeno-free and feeder-free conditions following GMP-compliant conditions. The NK92 cells grown in the bioreactor for three continuous production lots resulted in large quantities of both NK cell and NK-EV biotherapeutics at the end of each production lot (over 109 viable cells and 1013 EVs), while retaining their cytotoxic payload (granzyme B and perforin), pro-inflammatory cytokine (interferon-gamma) content and cytotoxicity against the human leukemic cell line K562 with limited off-target toxicity against healthy human fibroblast cells. This scalable biomanufacturing workflow has the potential to facilitate the clinical translation of adoptive NK cell-based and NK-EV-based immunotherapies for cancer with GMP considerations.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Fluxo de Trabalho , Células Matadoras Naturais , Imunoterapia/métodos , Neoplasias/terapia , Neoplasias/metabolismo
3.
Stem Cell Res Ther ; 12(1): 127, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579358

RESUMO

BACKGROUND: Extracellular vesicles (EVs) produced by human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) are currently investigated for their clinical effectiveness towards immune-mediated diseases. The large amounts of stem cell-derived EVs required for clinical testing suggest that bioreactor production systems may be a more amenable alternative than conventional EV production methods for manufacturing products for therapeutic use in humans. METHODS: To characterize the potential utility of these systems, EVs from four hBM-MSC donors were produced independently using a hollow-fiber bioreactor system under a cGMP-compliant procedure. EVs were harvested and characterized for size, concentration, immunophenotype, and glycan profile at three separate intervals throughout a 25-day period. RESULTS: Bioreactor-inoculated hBM-MSCs maintained high viability and retained their trilineage mesoderm differentiation capability while still expressing MSC-associated markers upon retrieval. EVs collected from the four hBM-MSC donors showed consistency in size and concentration in addition to presenting a consistent surface glycan profile. EV surface immunophenotypic analyses revealed a consistent low immunogenicity profile in addition to the presence of immuno-regulatory CD40 antigen. EV cargo analysis for biomarkers of immune regulation showed a high abundance of immuno-regulatory and angiogenic factors VEGF-A and IL-8. CONCLUSIONS: Significantly, EVs from hBM-MSCs with immuno-regulatory constituents were generated in a large-scale system over a long production period and could be frequently harvested with the same quality and quantity, which will circumvent the challenge for clinical application.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Reatores Biológicos , Medula Óssea , Diferenciação Celular , Humanos
4.
Stem Cell Res Ther ; 10(1): 401, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852509

RESUMO

BACKGROUND: Clinical applications have shown extracellular vesicles (EVs) to be a major paracrine effector in therapeutic responses produced by human mesenchymal stromal/stem cells (hMSCs). As the regenerative capacity of EVs is mainly ascribed to the transfer of proteins and RNA composing its cargo, and to the activity attributed by the protein surface markers, we sought to profile the protein composition of small EVs released from hMSCs to identify hMSC-EV biomarkers with potential clinical relevance. METHODS: Small EVs were produced and qualified from five human bone marrow MSC donors at low passage following a 48-h culture in exosome-depleted medium further processed by steps of centrifugation, filtration, and precipitation. Quantitative proteomic analysis comparing the protein profile of the EVs released from hMSCs and their parental cell was conducted using tandem mass tag labeling combined to mass spectrometry (LC-MS/MS) to identify enriched EV protein markers. RESULTS: Nanoparticle tracking analysis showed no differences in the EV concentration and size among the five hMSC donors (1.83 × 1010 ± 3.23 × 109/mL), with the mode particle size measuring at 109.3 ± 5.7 nm. Transmission electron microscopy confirmed the presence of nanovesicles with bilayer membranes. Flow cytometric analysis identified commonly found exosomal (CD63/CD81) and hMSC (CD105/CD44/CD146) markers from released EVs in addition to surface mediators of migration (CD29 and MCSP). Quantitative proteomic identified 270 proteins significantly enriched by at least twofold in EVs released from hMSCs as compared to parental hMSCs, where neuropilin 1 (NRP1) was identified among 21 membrane-bound proteins regulating the migration and invasion of cells, as well as chemotaxis and vasculogenesis. Validation by western blot of multiple batches of EVs confirmed consistent enrichment of NRP1 in the nanovesicles released from all five hMSC donors. CONCLUSION: The identification and verification of NRP1 as a novel enriched surface marker from multiple batches of EVs derived from multiple hMSC donors may serve as a biomarker for the assessment and measurement of EVs for therapeutic uses.


Assuntos
Vesículas Extracelulares/metabolismo , Neuropilina-1/metabolismo , Proteômica/métodos , Adulto , Biomarcadores/metabolismo , Membrana Celular/metabolismo , Vesículas Extracelulares/química , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Tamanho da Partícula , Tetraspanina 30/metabolismo , Adulto Jovem
5.
Stem Cells Int ; 2018: 1310904, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30675166

RESUMO

BACKGROUND: Human mesenchymal stromal/stem cells (hMSCs) hold great therapeutic potential due to their immunomodulatory and tissue regenerative properties. Enhancement of biological features of hMSCs by transfection has become a focus of investigation for cell- and gene-based therapies. However, many of the current transient transfection methods result in either low transfection efficiency or high cytotoxicity. METHODS: In order to find a transfection method that would address the current issues of low transfection efficiency and high cytotoxicity, 6 commercially available cationic lipid and polymer reagents were tested on human bone marrow-derived MSCs (hBM-MSCs) using GFP as a reporter gene. One transfection method using TransIT-2020 was selected and tested with an emphasis on cell quality (viability, identity, and yield), as well as efficacy with a human placental growth factor (PlGF) plasmid. RESULTS: TransIT-2020 yielded the highest fluorescence signal per cell out of the methods that did not decrease cell recovery. Transfecting GFP to 5 hBM-MSC donors using TransIT-2020 yielded 24-36% GFP-expressing cells with a viability of 85-96%. hBM-MSC identity was unaffected as CD90, CD105, and CD73 markers were retained (>95%+) after transfection. When this method was applied to PlGF expression, there was up to a 220-fold increase in secretion. Both growth and secretion of PlGF in overexpressing hBM-MSC were sustained over 7 days, confirming the sustainability and applicability of the TransIT-2020 transfection system. DISCUSSION: We report a simple and efficient method for transient transfection that has not been reported for hBM-MSCs, encompassing high levels of plasmid expression without significant changes to fundamental hBM-MSC characteristics.

6.
Stem Cells ; 34(8): 2249-55, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27090767

RESUMO

Multipotent mesenchymal stromal cell (MSC) transplantation is proposed as a novel therapy for treating diabetes by promoting the regeneration of damaged islets. The clinical promise of such treatments may be hampered by a high degree of donor-related variability in MSC function and a lack of standards for comparing potency. Here, we set out to identify markers of cultured human MSCs directly associated with islet regenerative function. Stromal cultures from nine separate bone marrow donors were demonstrated to have differing capacities to reduce hyperglycemia in the NOD/SCID streptozotocin-induced diabetic model. Regenerative (R) and non-regenerative (NR) MSC cultures were directly compared using isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics. A total of 1,410 proteins were quantified resulting in the identification of 612 upregulated proteins and 275 downregulated proteins by ± 1.2-fold in R-MSC cultures. Elastin microfibril interface 1 (EMILIN-1), integrin-linked protein kinase (ILK), and hepatoma-derived growth factor (HDGF) were differentially expressed in R-MSCs, and Ingenuity Pathway Analyses revealed each candidate as known regulators of integrin signaling. Western blot validation of EMILIN-1, ILK, and HDGF not only showed significantly higher abundance levels in R-MSCs, as compared with NR-MSCs, but also correlated with passage-induced loss of islet-regenerative potential. Generalized estimating equation modeling was applied to examine the association between each marker and blood glucose reduction. Both EMILIN-1 and ILK were significantly associated with blood glucose lowering function in vivo. Our study is the first to identify EMILIN-1 and ILK as prospective markers of islet regenerative function in human MSCs. Stem Cells 2016;34:2249-2255.


Assuntos
Ilhotas Pancreáticas/fisiologia , Glicoproteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Multipotentes/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Regeneração , Animais , Biomarcadores/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/terapia , Humanos , Hiperglicemia/patologia , Integrinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Camundongos SCID , Células-Tronco Multipotentes/metabolismo , Proteômica , Reprodutibilidade dos Testes , Estreptozocina , Doadores de Tecidos
7.
Artigo em Inglês | MEDLINE | ID: mdl-26114652

RESUMO

The N-linked glycosylation of four lots of a marketed human therapeutic monoclonal antibody (mAb) was assessed by three orthogonal chromatographic methods and a commercial lectin microarray. For chromatography, the N-glycans were removed enzymatically from the mAbs using PNGase F. Native glycans were determined by HPAEC-PAD using a panel of 21 N-glycan standards and a multi-stage linear gradient eluent profile for sequential analyses of typical neutral and sialylated glycans in one chromatographic run. The monosaccharide contents of these glycans following acid hydrolysis were confirmed by HPAEC-PAD with monosaccharide standards. Glycosylation analysis by HILIC-FD after stoichiometric labelling with two different fluorescent tags (2-AA and 2-AB) enabled direct quantitation. The 2-AA- and 2-AB-labelled versions of the same glycan standard panel yielded distinctive separation profiles suitable for orthogonal identification of mAb glycans. Glycan profiling with the lectin microarray required partial denaturation of the intact mAbs to expose the sequestered Fc N-glycans. Glycosylation fingerprints were obtained using a fluorescently labelled antibody directed against human IgG Fc. Fluorescence intensities from the fingerprints were deconvoluted with a proprietary algorithm to obtain semi-quantitative "glycan structural class" information. Glycosylation analyses of the four mAb lots by these four methods, which separate and detect oligosaccharides according to different principles, provided complementary and corroboratory qualitative and quantitative information. The predominant N-linked structures were core-fucosylated asialo diantennary structures with varying galactosylation. There were also trace amounts of afucosyl and bisected glycans, but no detectable sialylation by any of the four methods. The therapeutic mAb demonstrated a high degree of consistency in the types and amounts of N-linked glycans in the four lots (<6% CV), and between all four analysis methods (<6% CV). The described methods are co-supported by the excellent quantitative agreement of their results, which is particularly notable considering the orthogonality of their separation and detection mechanisms.


Assuntos
Anticorpos Monoclonais , Cromatografia Líquida de Alta Pressão/métodos , Polissacarídeos/análise , Análise Serial de Proteínas/métodos , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Glicosilação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lectinas/química
8.
PLoS One ; 7(6): e38954, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22719999

RESUMO

Bone marrow stromal cell cultures contain multipotent cells that may have therapeutic utility for tissue restoration; however, the identity of the cell that maintains this function remains poorly characterized. We have utilized a unique model of murine bone marrow stroma in combination with liquid chromatography mass spectrometry to compare the nuclear, cytoplasmic and membrane associated proteomes of multipotent (MSC) (CD105+) and non-multipotent (CD105-) stromal cells. Among the 25 most reliably identified proteins, 10 were verified by both real-time PCR and Western Blot to be highly enriched, in CD105+ cells and were members of distinct biological pathways and functional networks. Five of these proteins were also identified as potentially expressed in human MSC derived from both standard and serum free human stromal cultures. The quantitative amount of each protein identified in human stromal cells was only minimally affected by media conditions but varied highly between bone marrow donors. This study provides further evidence of heterogeneity among cultured bone marrow stromal cells and identifies potential candidate proteins that may prove useful for identifying and quantifying both murine and human MSC in vitro.


Assuntos
Proteômica , Células Estromais/metabolismo , Animais , Antígenos CD/imunologia , Diferenciação Celular , Cromatografia Líquida , Endoglina , Humanos , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Superfície Celular/imunologia , Células Estromais/citologia , Células Estromais/imunologia , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA