RESUMO
The E2 protein of bovine viral diarrhea virus (BVDV) is a known protective antigen and a major target for DNA vaccines. DNA vaccines have various advantages; however, their immunogenicity needs to be enhanced by using adjuvants or drug delivery systems. In this study, we used mouse lysosome-associated membrane protein 1 (mLAMP1) as a molecular adjuvant and developed a DNA vaccine encoding an mLAMP1-BVDV E2 chimeric protein (pVax-mLAMP1-E2). We constructed DNA plasmids in which the E2 gene was inserted within the hinge region (H) or membrane proximal domain (D) of the mLAMP1 gene. Transfection of these plasmids into cultured cells led to high expression of E2 antigen from pVax-mLAMP1-E2 (H). Intradermal immunization of mice with pVax-mLAMP1-E2 (H) induced sufficient neutralizing antibodies and splenocytes with E2 antigen-specific IFN-γ production compared with pVax-mLAMP1-E2 (D). However, the immunogenicity of pVax mLAMP1-E2 (H) in mice did not differ from that of a control plasmid without the LAMP1 molecule (pVax-E2). In cattle, geometric mean serum neutralizing antibody titers after intradermal or intramuscular injection tended to be higher with pVax-mLAMP1-E2 (H) than with pVax that expressed E2 without mLAMP1. In addition, E2 antigen-specific IFN-γ production in peripheral blood mononuclear cells from cattle immunized intradermally with pVax-mLAMP1-E2 (H) was not significantly different from that of pVax-E2. These results suggest that mLAMP1 fusion antigens effectively induce humoral and cellular immunity in mice and cattle, especially when the antigen is inserted in the hinge region of mLAMP1. The LAMP1-E2 fusion antigen may be a useful candidate for a BVDV DNA vaccine in cattle.
RESUMO
Tau is a microtubule-associated protein that plays an important role in modulating axonal microtubules in neurons. Intracellular tau aggregates are found in a broad class of disorders, including Alzheimer's disease, termed tauopathies. Tau is an intrinsically disordered protein, and its structural disorder appears to be critical to its microtubule-related functions. Tubulin binding sites are found in tau's proline-rich region (PRR), microtubule binding repeats (MTBR: R1-R4), and pseudo-repeat, R'. While many post-translational modifications have been identified on tau, phosphorylation sites, which both regulate tubulin dimer and microtubule interactions and are correlated with disease, cluster with high frequency within the PRR. Here, we use fluorescence correlation spectroscopy and structural mass spectrometry techniques to characterize the impact of phosphomimic mutations in the PRR on tubulin dimer binding and probe the structure of the PRR-tubulin dimer complex. We find that phosphomimics cumulatively diminish tubulin dimer binding and slow microtubule polymerization. Additionally, we map two â¼15 residue regions of the PRR as primary tubulin dimer binding sites and propose a model in which PRR enhances lateral interactions between tubulin dimers, complementing the longitudinal interactions observed for MTBR. Together these measurements provide insight into the previously overlooked relevance of tau's PRR in functional interactions with tubulin.
RESUMO
The eukaryotic transcriptional Mediator comprises a large core (cMED) and a dissociable CDK8 kinase module (CKM). cMED recruits RNA polymerase II (RNA Pol II) and promotes pre-initiation complex formation in a manner repressed by the CKM through mechanisms presently unknown. Herein, we report cryoelectron microscopy structures of the complete human Mediator and its CKM. The CKM binds to multiple regions on cMED through both MED12 and MED13, including a large intrinsically disordered region (IDR) in the latter. MED12 and MED13 together anchor the CKM to the cMED hook, positioning CDK8 downstream and proximal to the transcription start site. Notably, the MED13 IDR obstructs the recruitment of RNA Pol II/MED26 onto cMED by direct occlusion of their respective binding sites, leading to functional repression of cMED-dependent transcription. Combined with biochemical and functional analyses, these structures provide a conserved mechanistic framework to explain the basis for CKM-mediated repression of cMED function.
Assuntos
Microscopia Crioeletrônica , Quinase 8 Dependente de Ciclina , Complexo Mediador , RNA Polimerase II , Humanos , Complexo Mediador/metabolismo , Complexo Mediador/genética , Complexo Mediador/química , Quinase 8 Dependente de Ciclina/metabolismo , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/química , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/química , Sítios de Ligação , Ligação Proteica , Transcrição Gênica , Modelos Moleculares , Relação Estrutura-Atividade , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genéticaRESUMO
RNA polymerase II (pol II) initiates transcription from transcription start sites (TSSs) located â¼30-35 bp downstream of the TATA box in metazoans, whereas in the yeast Saccharomyces cerevisiae, pol II scans further downstream TSSs located â¼40-120 bp downstream of the TATA box. Previously, we found that removal of the kinase module TFIIK (Kin28-Ccl1-Tfb3) from TFIIH shifts the TSS in a yeast in vitro system upstream to the location observed in metazoans and that addition of recombinant Tfb3 back to TFIIH-ΔTFIIK restores the downstream TSS usage. Here, we report that this biochemical activity of yeast TFIIK in TSS scanning is attributable to the Tfb3 RING domain at the interface with pol II in the pre-initiation complex (PIC): especially, swapping Tfb3 Pro51-a residue conserved among all fungi-with Ala or Ser as in MAT1, the metazoan homolog of Tfb3, confers an upstream TSS shift in vitro in a similar manner to the removal of TFIIK. Yeast genetic analysis suggests that both Pro51 and Arg64 of Tfb3 are required to maintain the stability of the Tfb3-pol II interface in the PIC. Cryo-electron microscopy analysis of a yeast PIC lacking TFIIK reveals considerable variability in the orientation of TFIIH, which impairs TSS scanning after promoter opening.
Assuntos
RNA Polimerase II , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Sítio de Iniciação de Transcrição , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , RNA Polimerase II/metabolismo , RNA Polimerase II/química , RNA Polimerase II/genética , Interações Hidrofóbicas e Hidrofílicas , TATA Box/genética , Fator de Transcrição TFIIH/metabolismo , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/química , Regiões Promotoras GenéticasRESUMO
[Purpose] This study aimed to test whether a combination of specific postures and movements can increase trunk muscle activity in older adults. [Participants and Methods] Forty-six community-dwelling older adults (mean age: 83.9 ± 4.5â years) were living independently without the need for nursing care. The thicknesses of the external oblique, internal oblique, and transversus abdominis muscles were measured during the following three tasks: task I, natural sitting posture; task II, specific sitting posture to promote activity of the deep trunk muscles; and task III, task II plus a pushing down motion using both upper limbs. During each task, an ultrasound imaging device was used to measure the thicknesses of the external oblique, internal oblique, and transversus abdominis muscles on both the left and right sides according to the time required for expiration. [Results] Significant differences were found in the thicknesses of the internal oblique and transversus abdominis muscles between tasks II and III. Among the three muscles, the transversus abdominis showed the highest increase in thickness. [Conclusion] High activity of the trunk muscles, especially the transverse abdominis, can be achieved via specific sitting positions/tasks and further manipulations to increase the intra-abdominal pressure in both upper limbs.
RESUMO
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis and causes a persistent infection that can leave cattle with no symptoms. Many countries have been able to successfully eradicate BLV through improved detection and management methods. However, with the increasing novel molecular detection methods there have been few efforts to standardize these results at global scale. This study aimed to determine the interlaboratory accuracy and agreement of 11 molecular tests in detecting BLV. Each qPCR/ddPCR method varied by target gene, primer design, DNA input and chemistries. DNA samples were extracted from blood of BLV-seropositive cattle and lyophilized to grant a better preservation during shipping to all participants around the globe. Twenty nine out of 44 samples were correctly identified by the 11 labs and all methods exhibited a diagnostic sensitivity between 74 and 100%. Agreement amongst different assays was linked to BLV copy numbers present in samples and the characteristics of each assay (i.e., BLV target sequence). Finally, the mean correlation value for all assays was within the range of strong correlation. This study highlights the importance of continuous need for standardization and harmonization amongst assays and the different participants. The results underscore the need of an international calibrator to estimate the efficiency (standard curve) of the different assays and improve quantitation accuracy. Additionally, this will inform future participants about the variability associated with emerging chemistries, methods, and technologies used to study BLV. Altogether, by improving tests performance worldwide it will positively aid in the eradication efforts.
Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Provírus , Vírus da Leucemia Bovina/isolamento & purificação , Vírus da Leucemia Bovina/genética , Animais , Bovinos , Leucose Enzoótica Bovina/diagnóstico , Leucose Enzoótica Bovina/virologia , Leucose Enzoótica Bovina/sangue , Provírus/genética , Provírus/isolamento & purificação , Reação em Cadeia da Polimerase/veterinária , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase em Tempo Real/métodos , DNA Viral/sangueRESUMO
The eukaryotic Mediator, comprising a large Core (cMED) and a dissociable CDK8 kinase module (CKM), regulates RNA Polymerase II (Pol II)-dependent transcription. cMED recruits Pol II and promotes pre-initiation complex (PIC) formation in a manner inhibited by the CKM, which is also implicated in post-initiation control of gene expression. Herein we report cryo-electron microscopy structures of the human complete Mediator and its CKM, which explains the basis for CKM inhibition of cMED-activated transcription. The CKM binds to cMED through an intrinsically disordered region (IDR) in MED13 and HEAT repeats in MED12. The CKM inhibits transcription by allocating its MED13 IDR to occlude binding of Pol II and MED26 to cMED and further obstructing cMED-PIC assembly through steric hindrance with TFIIH and the +1 nucleosome. Notably, MED12 binds to the cMED Hook, positioning CDK8 downstream of the transcription start site, which sheds new light on its stimulatory function in post-initiation events.
RESUMO
The evolutionarily conserved HIRA/Hir histone chaperone complex and ASF1a/Asf1 co-chaperone cooperate to deposit histone (H3/H4)2 tetramers on DNA for replication-independent chromatin assembly. The molecular architecture of the HIRA/Hir complex and its mode of histone deposition have remained unknown. Here, we report the cryo-EM structure of the S. cerevisiae Hir complex with Asf1/H3/H4 at 2.9-6.8 Å resolution. We find that the Hir complex forms an arc-shaped dimer with a Hir1/Hir2/Hir3/Hpc2 stoichiometry of 2/4/2/4. The core of the complex containing two Hir1/Hir2/Hir2 trimers and N-terminal segments of Hir3 forms a central cavity containing two copies of Hpc2, with one engaged by Asf1/H3/H4, in a suitable position to accommodate a histone (H3/H4)2 tetramer, while the C-terminal segments of Hir3 harbor nucleic acid binding activity to wrap DNA around the Hpc2-assisted histone tetramer. The structure suggests a model for how the Hir/Asf1 complex promotes the formation of histone tetramers for their subsequent deposition onto DNA.
Assuntos
Proteínas de Ciclo Celular , Microscopia Crioeletrônica , Chaperonas de Histonas , Histonas , Ligação Proteica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histonas/metabolismo , Histonas/química , Histonas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Chaperonas de Histonas/metabolismo , Chaperonas de Histonas/química , Chaperonas de Histonas/genética , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Multimerização Proteica , Sítios de Ligação , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Domínios e Motivos de Interação entre ProteínasRESUMO
To identify a biomarker for the early diagnosis of enzootic bovine leukosis (EBL) caused by bovine leukemia virus (BLV), we investigated the expression of a microRNA, bta-miR-375, in cattle serum. Using quantitative reverse-transcriptase PCR analysis, we measured bta-miR-375 levels in 27 samples from cattle with EBL (EBL cattle), 45 samples from animals infected with BLV but showing no clinical signs (NS cattle), and 30 samples from cattle uninfected with BLV (BLV negative cattle). In this study, we also compared the kinetics of bta-miR-375 with those of the conventional biomarkers of proviral load (PVL), lactate dehydrogenase (LDH), and thymidine kinase (TK) from the no-clinical-sign phase until EBL onset in three BLV-infected Japanese black (JB) cattle. Bta-miR-375 expression was higher in NS cattle than in BLV negative cattle (P < 0.05) and greater in EBL cattle than in BLV negative and NS cattle (P < 0.0001 for both comparisons). Receiver operating characteristic curves demonstrated that bta-miR-375 levels distinguished EBL cattle from NS cattle with high sensitivity and specificity. In NS cattle, bta-miR-375 expression was increased as early as at 2 months before EBL onset-earlier than the expression of PVL, TK, or LDH isoenzymes 2 and 3. These results suggest that serum miR-375 is a promising biomarker for the early diagnosis of EBL.
Assuntos
Biomarcadores , Diagnóstico Precoce , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , MicroRNAs , Animais , Bovinos , Leucose Enzoótica Bovina/diagnóstico , Leucose Enzoótica Bovina/sangue , Leucose Enzoótica Bovina/virologia , MicroRNAs/sangue , MicroRNAs/genética , Biomarcadores/sangue , Vírus da Leucemia Bovina/genética , Curva ROC , L-Lactato Desidrogenase/sangueRESUMO
Cryo-electron microscopy single particle analysis (cryo-EM SPA) and cryo-electron tomography (cryo-ET) have historically been employed as distinct approaches for investigating molecular structures of disparate sample types, focusing on highly purified biological macromolecules and in situ cellular contexts, respectively. However, these techniques offer inherently complementary structural insights that, when combined, provide a more comprehensive understanding of complex biological systems. For example, if both techniques are applied to the same purified biological macromolecules, cryo-ET has the ability to resolve highly flexible yet strong signal features on an individual target molecule which will not be preserved in the high-resolution cryo-EM SPA results. In this review, we highlight recent achievements utilizing such applications to unveil new insights into the chromatin assembly and activities of DNA-protein assemblies. This convergence of cryo-EM SPA and cryo-ET holds great promise for elucidating new structural aspects of these essential molecular processes.
Assuntos
Tomografia com Microscopia Eletrônica , Imagem Individual de Molécula , Microscopia Crioeletrônica/métodos , Proteínas/química , Estrutura MolecularRESUMO
This study investigated the mRNA of immune factors expressed by milk somatic cells from 72 healthy lactating Holstein cows on 1 farm. Milk samples were collected aseptically from the right front mammary gland before milking. The milk samples that had a negative reaction to the California mastitis test were used to analyze the mRNA of immune factors. Cows were divided into 2 groups based on the detection of bacteria in milk samples: positive group (n = 22 cows), which showed bacteria in cultures, and negative group (n = 50 cows), which did not show bacteria in cultures. There were significant positive correlations among the relative mRNA levels of interleukin (IL)-6, IL-8, arginase 1, chemokine (C-C motif) ligand (CCL) 1, and chemokine (C-X-C motif) ligand (CXCL) 13, as well as among the relative mRNA levels of IL-10, pentraxin 3, CCL5, and CCL14. Significantly high levels of IL-1ß, IL-6, IL-8, arginase 1, Batf, CCL1, CXCL14, and toll-like receptor 4 in the positive group were discovered compared to the negative group. These results suggest that the presence of bacteria in lactating healthy dairy cows may affect mRNA levels of inflammatory mediators expressed by somatic cells.
Cette étude a examiné l'ARNm des facteurs immunitaires exprimés par les cellules somatiques du lait de 72 vaches Holstein en lactation en bonne santé dans une ferme. Des échantillons de lait ont été prélevés aseptiquement du quartier avant droit de la glande mammaire avant la traite. Les échantillons de lait ayant eu une réaction négative au test de mammite de Californie ont été utilisés pour analyser l'ARNm des facteurs immunitaires. Les vaches ont été divisées en deux groupes sur la base de la détection de bactéries dans les échantillons de lait : groupe positif (n = 22 vaches), qui a montré la présence de bactéries lors des cultures, et groupe négatif (n = 50 vaches), qui n'a pas montré de bactéries lors des cultures. Il y avait des corrélations positives significatives entre les niveaux relatifs d'ARNm de l'interleukine (IL)-6, de l'IL-8, de l'arginase 1, du ligand de chimiokine (motif C-C) (CCL) 1 et du ligand de chimiokine (motif C-X-C) (CXCL) 13, ainsi que parmi les niveaux relatifs d'ARNm d'IL-10, de pentraxine 3, de CCL5 et de CCL14. Des niveaux significativement élevés d'IL-1ß, d'IL-6, d'IL-8, d'arginase 1, de Batf, de CCL1, de CXCL14 et de récepteur de type Toll 4 dans le groupe positif ont été découverts par rapport au groupe négatif. Ces résultats suggèrent que la présence de bactéries chez des vaches laitières saines en lactation peut affecter les niveaux d'ARNm des médiateurs inflammatoires exprimés par les cellules somatiques.(Traduit par Docteur Serge Messier).
Assuntos
Doenças dos Bovinos , Mastite Bovina , Feminino , Bovinos , Animais , Leite , Lactação , Arginase/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Ligantes , Mastite Bovina/microbiologia , Fatores Imunológicos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Glândulas Mamárias AnimaisRESUMO
Most eukaryotic promoter regions are divergently transcribed. As the RNA polymerase II pre-initiation complex (PIC) is intrinsically asymmetric and responsible for transcription in a single direction, it is unknown how divergent transcription arises. Here, the Saccharomyces cerevisiae Mediator complexed with a PIC (Med-PIC) was assembled on a divergent promoter and analyzed by cryoelectron microscopy. The structure reveals two distinct Med-PICs forming a dimer through the Mediator tail module, induced by a homodimeric activator protein localized near the dimerization interface. The tail dimer is associated with â¼80-bp upstream DNA, such that two flanking core promoter regions are positioned and oriented in a suitable form for PIC assembly in opposite directions. Also, cryoelectron tomography visualized the progress of the PIC assembly on the two core promoter regions, providing direct evidence for the role of the Med-PIC dimer in divergent transcription.
Assuntos
RNA Polimerase II , Proteínas de Saccharomyces cerevisiae , RNA Polimerase II/metabolismo , Microscopia Crioeletrônica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Regiões Promotoras Genéticas , Transcrição Gênica , Complexo Mediador/genética , Iniciação da Transcrição GenéticaRESUMO
[Purpose] This study aimed to investigate the prevalence of frailty among community-dwelling elderly females, and to examine its relation to motor function and the main risk factors of frailty. [Participants and Methods] The participants were 67 community-dwelling elderly females, aged 76.2 ± 7.7â years. We performed measurements of physical parameters, motor functions (such as grip strength), timed up and go test (TUG), walking speed, and frailty (measured using the Kihon Checklist [KCL]). [Results] KCL scores were 31.3%, 31.3%, and 37.3% in the frailty, pre-frailty, and robust groups, respectively. The frailty group was older than the pre-frailty and robust groups. Additionally, the different groups showed significant differences in grip strength, TUG, and walking speed. The highest median KCL score was for depression, followed by physical function. As a results, frailty was evident even among health-conscious elderly people. [Conclusion] It is essential to identify frailty at an early stage and identify its preventive factors, in order to extend the healthy life expectancy of the local population.
RESUMO
PURPOSE: We aimed to assess choroidal vascularity by diabetic retinopathy (DR) stage using the choroidal vascular density (CVD) obtained from swept-source optical coherence tomography en-face images. METHODS: This prospective, cross-sectional, multicenter study included patients from Niigata City General Hospital and Saiseikai Niigata Hospital between October 2016 and October 2017. Choroidal vascular density was obtained by binarizing swept-source optical coherence tomography en-face images of patients with diabetes and those with DR, patients without DR, and healthy age-matched volunteers. RESULTS: Patients were allocated to the healthy control (n = 28), no DR (n = 23), nonproliferative DR (NPDR) without diabetic macular edema (DME) (n = 50), NPDR + DME (n = 38), and proliferative DR (PDR) or any previous treatment with panretinal photocoagulation (n = 26) groups. Investigation of the choriocapillaris slab level indicated that the no DR group had significantly high CVD values ( P < 0.05), and the PDR groups had significantly low CVD values ( P < 0.01). Investigation of the large choroidal vessel level indicated that the NPDR + DME and PDR groups had significantly lower CVD values than the control group ( P < 0.05 and P < 0.01, respectively). CONCLUSION: We found that at the choriocapillaris slab level, the no DR group had a higher CVD and the NPDR with DME and PDR groups had a lower CVD than the control group. At the level of the large choroidal vessels, the NPDR with DME and PDR groups had a lower CVD than the control group. There were significant differences in choroidal vasculature found using CVD obtained from swept-source optical coherence tomography en-face images of patients with diabetes and DR.
Assuntos
Diabetes Mellitus , Retinopatia Diabética , Edema Macular , Humanos , Retinopatia Diabética/complicações , Retinopatia Diabética/diagnóstico , Tomografia de Coerência Óptica/métodos , Estudos Transversais , Estudos Prospectivos , Densidade Microvascular , Corioide/irrigação sanguíneaRESUMO
Fascioliasis is a neglected tropical zoonotic disease caused by liver flukes belonging to the genus Fasciola. The emergence of resistance to triclabendazole, the only World Health Organization-recommended drug for this disease, highlights the need for the development of new drugs. Helminths possess an anaerobic mitochondrial respiratory chain (fumarate respiration) which is considered a potential drug target. This study aimed to evaluate the occurrence of fumarate respiration in Fasciola flukes. We analyzed the properties of the respiratory chain of Fasciola flukes in both adults and newly excysted juveniles (NEJs). Fasciola flukes travel and mature through the stomach, bowel, and abdominal cavity to the liver, where oxygen levels gradually decline. High fumarate reductase activity was observed in the mitochondrial fraction of adult Fasciola flukes. Furthermore, rhodoquinone-10 (RQ10 Em'= -63 mV), a low-potential electron mediator used in fumarate respiration was found to be predominant in adults. In contrast, the activity of oxygen respiration was low in adults. Rotenone, atpenin A5, and ascochlorin, typical inhibitors of mitochondrial enzymes in complexes I, II, and III, respectively, inhibit the activity of each enzyme in the adult mitochondrial fraction. These inhibitors were then used for in vitro viability tests of NEJs. Under aerobic conditions, NEJs were killed by rotenone or ascochlorin, which inhibit aerobic respiration (complex I-III), whereas atpenin A5, which inhibits complex II involved in fumarate respiration, did not affect NEJs. Moreover, ubiquinone-10 (UQ10 Em'= +110 mV), which is used in oxidative respiration, was detected in NEJs, in addition to RQ10. In contrast, under anaerobic conditions, rotenone and atpenin A5, which inhibit fumarate respiration (complex I-II), were crucial for NEJs. These findings demonstrate that NEJs have active hybrid respiration, in which they can properly use both oxygen and fumarate respiration, depending on oxygen availability. Thus, fumarate respiration is a promising drug target for Fasciola flukes, because it plays an essential role in both adults and NEJs.
Assuntos
Alcenos , Fasciola , Fasciolíase , Fenóis , Animais , Rotenona , Fasciolíase/tratamento farmacológico , Respiração , OxigênioRESUMO
Bovine leukemia virus (BLV), a retrovirus, infects B cells of ruminants and is integrated into the host genome as a provirus for lifelong infection. After a long latent period, 1% to 5% of BLV-infected cattle develop aggressive lymphoma, enzootic bovine leukosis (EBL). Since the clonal expansion of BLV-infected cells is essential for the development of EBL, the clonality of proviral integration sites could be a molecular marker for diagnosis and early prediction of EBL. Recently, we developed Rapid Amplification of the Integration Site without Interference by Genomic DNA Contamination (RAISING) and an analysis software of clonality value (CLOVA) to analyze the clonality of transgene-integrated cells. RAISING-CLOVA is capable of assessing the risk of adult T-cell leukemia/lymphoma development in human T-cell leukemia virus-I-infected individuals through the clonality analysis of proviral integration sites. Thus, we herein examined the performance of RAISING-CLOVA for the clonality analysis of BLV-infected cells and conducted a comprehensive clonality analysis by RAISING-CLOVA in EBL and non-EBL cattle. RAISING-CLOVA targeting BLV was a highly accurate and reproducible method for measuring the clonality value. The comprehensive clonality analysis successfully distinguished EBL from non-EBL specimens with high sensitivity and specificity. A longitudinal clonality analysis in BLV-infected sheep, an experimental model of lymphoma, also confirmed the effectiveness of RAISING-CLOVA for early detection of EBL development. Therefore, our study emphasizes the usefulness of RAISING-CLOVA as a routine clinical test for monitoring virus-related cancers. IMPORTANCE Bovine leukemia virus (BLV) infection causes aggressive B-cell lymphoma in cattle and sheep. The virus has spread to farms around the world, causing significant economic damage to the livestock industry. Thus, the identification of high-risk asymptomatic cattle before they develop lymphoma can be effective in reducing the economic damage. Clonal expansion of BLV-infected cells is a promising marker for the development of lymphoma. Recently, we have developed a high-throughput method to amplify random integration sites of transgenes in host genomes and analyze their clonality, named as RAISING-CLOVA. As a new application of our technology, in this study, we demonstrate the value of the RAISING-CLOVA method for the diagnosis and early prediction of lymphoma development by BLV infection in cattle. RAISING-CLOVA is a reliable technology for monitoring the clonality of BLV-infected cells and would contribute to reduce the economic losses by EBL development.
Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Linfoma , Bovinos , Humanos , Animais , Ovinos , Vírus da Leucemia Bovina/genética , Leucose Enzoótica Bovina/diagnóstico , Provírus/genética , Integração ViralRESUMO
Fusicoccadiene synthase from the fungus Phomopsis amygdali (PaFS) is an assembly-line terpene synthase that catalyzes the first two steps in the biosynthesis of Fusiccocin A, a diterpene glycoside. The C-terminal prenyltransferase domain of PaFS catalyzes the condensation of one molecule of C5 dimethylallyl diphosphate and three molecules of C5 isopentenyl diphosphate to form C20 geranylgeranyl diphosphate, which then transits to the cyclase domain for cyclization to form fusicoccadiene. Previous structural studies of PaFS using electron microscopy (EM) revealed a central octameric prenyltransferase core with eight cyclase domains tethered in random distal positions through flexible 70-residue linkers. However, proximal prenyltransferase-cyclase configurations could be captured by covalent cross-linking and observed by cryo-EM and mass spectrometry. Here, we use cryo-EM to show that proximally configured prenyltransferase-cyclase complexes are observable even in the absence of covalent cross-linking; moreover, such complexes can involve multiple cyclase domains. A conserved basic patch on the prenyltransferase domain comprises the primary touchpoint with the cyclase domain. These results support a model for transient prenyltransferase-cyclase association in which the cyclase domains of PaFS are in facile equilibrium between proximal associated and random distal positions relative to the central prenyltransferase octamer. The results of biophysical measurements using small-angle X-ray scattering, analytical ultracentrifugation, dynamic light scattering, and size-exclusion chromatography in-line with multi-angle light scattering are consistent with this model. This model accordingly provides a framework for understanding substrate transit between the prenyltransferase and cyclase domains as well as the cooperativity observed for geranylgeranyl diphosphate cyclization.
Assuntos
Alquil e Aril Transferases , Dimetilaliltranstransferase , Diterpenos , Diterpenos/químicaRESUMO
Epstein-Barr nuclear antigen 1 (EBNA1) is a multifunctional viral-encoded DNA-binding protein essential for Epstein-Barr virus (EBV) DNA replication and episome maintenance. EBNA1 binds to two functionally distinct elements at the viral origin of plasmid replication (oriP), termed the dyad symmetry (DS) element, required for replication initiation and the family of repeats (FR) required for episome maintenance. Here, we determined the cryo-electron microscopy (cryo-EM) structure of the EBNA1 DNA binding domain (DBD) from amino acids (aa) 459 to 614 and its interaction with two tandem sites at the DS and FR. We found that EBNA1 induces a strong DNA bending angle in the DS, while the FR is more linear. The N-terminal arm of the DBD (aa 444 to 468) makes extensive contact with DNA as it wraps around the minor groove, with some conformational variation among EBNA1 monomers. Mutation of variable-contact residues K460 and K461 had only minor effects on DNA binding but had abrogated oriP-dependent DNA replication. We also observed that the AT-rich intervening DNA between EBNA1 binding sites in the FR can be occupied by the EBNA1 AT hook, N-terminal domain (NTD) aa 1 to 90 to form a Zn-dependent stable complex with EBNA1 DBD on a 2×FR DNA template. We propose a model showing EBNA1 DBD and NTD cobinding at the FR and suggest that this may contribute to the oligomerization of viral episomes important for maintenance during latent infection. IMPORTANCE EBV latent infection is causally linked to diverse cancers and autoimmune disorders. EBNA1 is the viral-encoded DNA binding protein required for episomal maintenance during latent infection and is consistently expressed in all EBV tumors. The interaction of EBNA1 with different genetic elements confers different viral functions, such as replication initiation at DS and chromosome tethering at FR. Here, we used cryo-EM to determine the structure of the EBNA1 DNA-binding domain (DBD) bound to two tandem sites at the DS and at the FR. We also show that the NTD of EBNA1 can interact with the AT-rich DNA sequence between tandem EBNA1 DBD binding sites in the FR. These results provide new information on the mechanism of EBNA1 DNA binding at DS and FR and suggest a higher-order oligomeric structure of EBNA1 bound to FR. Our findings have implications for targeting EBNA1 in EBV-associated disease.
Assuntos
Antígenos Nucleares do Vírus Epstein-Barr/química , Herpesvirus Humano 4/química , Origem de Replicação , Sítios de Ligação , Microscopia Crioeletrônica , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Infecções por Vírus Epstein-Barr , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/ultraestrutura , Herpesvirus Humano 4/metabolismo , Humanos , Infecção Latente , Plasmídeos , Replicação ViralRESUMO
Bovine viral diarrhea virus (BVDV) causes substantial economic losses in the livestock industry worldwide. Plasmids encoding the BVDV E2 protein are potential DNA vaccines against BVDV, but their immunogenicity has been insufficient. Here, we investigated the adjuvant effect of CD40 and CD63 plasmids on the immune responses to a BVDV E2 DNA vaccine in mice. We constructed pUMVC4a-based plasmids encoding the BVDV E2 protein (pE2), mouse CD40 (pCD40), or mouse CD63 (pCD63). Protein expression by each plasmid was confirmed through Western blot analysis and immunofluorescence staining of cultured cell lines. BALB/c mice were immunized intradermally twice with pE2 in combination with, or without, pCD40 or pCD63, with 3 weeks between the two doses. pE2 with pCD40 induced significantly higher neutralizing antibody titers against BVDV than pE2 alone. pE2 with pCD63 induced significantly higher anti-E2 IgG2a antibody titers than pE2 alone. Furthermore, pE2 with pCD40 or pCD63 induced significantly increased lymphocyte proliferation and interferon (IFN)-γ production in response to BVDV, compared with E2 alone. These results suggest that a plasmid encoding CD40 or CD63 can be used as an adjuvant to enhance immune responses to DNA vaccines against BVDV.
Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Doenças dos Bovinos , Vírus da Diarreia Viral Bovina Tipo 1 , Vírus da Diarreia Viral Bovina , Doenças dos Roedores , Vacinas de DNA , Vacinas Virais , Adjuvantes Imunológicos , Animais , Anticorpos Antivirais , Doença das Mucosas por Vírus da Diarreia Viral Bovina/prevenção & controle , Bovinos , Diarreia/veterinária , Vírus da Diarreia Viral Bovina Tipo 1/genética , Imunidade , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos/genética , Proteínas do Envelope ViralRESUMO
Bovine leukemia virus (BLV) is an oncogenic virus belonging to the genus Deltaretrovirus and is the causative agent of enzootic bovine leukosis. Proviral load (PVL) determined by real-time quantitative PCR (qPCR) is now widely used as an indicator of not only BLV infection, but also BLV disease progression. To interpret PVLs determined by different qPCRs used in Japan, we compared a chimeric cycling probe-based qPCR, CY415, targeting the BLV tax region; a TaqMan probe-based qPCR, RC202, targeting the BLV pol region; and a TaqMan probe-based qPCR, CoCoMo, targeting the BLV long terminal repeat (LTR) region. Whole-blood samples collected from 317 naturally BLV-infected cattle (165 Holstein-Friesian and 152 Japanese Black) and tumor tissue samples collected from 32 cattle at a meat inspection center were used. The PVLs determined by each qPCR were strongly correlated. However, the PVL and the proportion of BLV-infected cells determined by RC202 or CoCoMo were significantly higher than those determined by CY415. Genetic analysis of three tumor tissue samples revealed that LTR region mutations or a deletion affected the PVL determined by CoCoMo. These results suggest that the TaqMan-based RC202 or CoCoMo qPCR is better than CY415 for BLV PVL analysis. However, qPCR target region mutations were not rare in tumors and could hamper PVL analysis by using qPCR.