Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 18(11): 6920-6931, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36269878

RESUMO

Protons display a high chemical activity and strongly affect the charge storage capability in confined interlayer spaces of two-dimensional (2D) materials. As such, an accurate representation of proton dynamics under confinement is important for understanding and predicting charge storage dynamics in these materials. While often ignored in atomistic-scale simulations, nuclear quantum effects (NQEs), e.g., tunneling, can be significant under confinement even at room temperature. Using the thermostatted ring polymer molecular dynamics implementation of path integral molecular dynamics (PIMD) in conjunction with the ReaxFF force field, density functional tight binding (DFTB), and NequIP neural network potential simulations, we investigate the role of NQEs on proton and water transport in bulk water and aqueous electrolytes under confinement in Ti3C2 MXenes. Although overall NQEs are relatively small, especially in bulk, we find that they can alter both quantitative values and qualitative trends on both proton transport and water self-diffusion under confinement relative to classical MD predictions. Therefore, our results suggest the need for NQEs to be considered to simulate aqueous systems under confinement for both qualitative and quantitative accuracy.

2.
Nanoscale ; 14(25): 9086-9096, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35713192

RESUMO

MXenes are promising materials for rechargeable metal ion batteries and supercapacitors due to their high energy storage capacities, high electrical and ionic conductivities, and ease of synthesis. In this study, we predict the structure and properties of hitherto unexplored Ti-boron nitride MXenes (Ti3BN and Ti3BNT2 where T = F, O, OH) using high-throughput density functional theory calculations. We identify multiple stable structures exhibiting high thermodynamic and mechanical stability with B and N atoms evenly dispersed in the lattice sites. The predicted properties of the BN MXenes show remarkable similarities to their carbide counterparts, including in their metallicity, elastic constants, and cation absorption properties. Significantly, these novel MXene compounds display high lithium storage capacities (>250 mA h g-1), as well as suitability for non-lithium ion storage (Na, K, Ca, Mg), making them attractive candidates for both batteries and supercapacitors. This class of MXenes therefore merits further theoretical and experimental investigation.

3.
J Phys Condens Matter ; 29(15): 155302, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28170348

RESUMO

The presence of artificial correlations associated with Green-Kubo (GK) thermal conductivity calculations is investigated. The thermal conductivity of nano-suspensions is calculated by equilibrium molecular dynamics (EMD) simulations using GK relations. Calculations are first performed for a single alumina (Al2O3) nanoparticle dispersed in a water medium. For a particle size of 1 nm and volume fraction of 9%, results show enhancements as high as 235%, which is much higher than the Maxwell model predictions. When calculations are done with multiple suspended particles, no such anomalous enhancement is observed. This is because the vibrations in alumina crystal can act as low frequency perturbations, which can travel long distances through the surrounding water medium, characterized by higher vibration frequencies. As a result of the periodic boundaries, they re-enter the system resulting in a circular resonance of thermal fluctuations between the alumina particle and its own image, eventually leading to artificial correlations in the heat current autocorrelation function (HCACF), which when integrated yields abnormally high thermal conductivities. Adding more particles presents 'obstacles' with which the fluctuations interact and get dissipated, before they get fed back to the periodic image. A systematic study of the temporal evolution of HCACF indicates that the magnitude and oscillations of artificial correlations decrease substantially with increase in the number of suspended nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA