Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(20)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38785283

RESUMO

We develop an adaptive scheme in the kinetic Monte Carlo simulations, where the adsorption and activation energies of all elementary steps, including the effects of other adsorbates, are evaluated "on-the-fly" by employing the neural network potentials. The configurations and energies evaluated during the simulations are stored for reuse when the same configurations are sampled in a later step. The present scheme is applied to hydrogen adsorption and diffusion on the Pd(111) and Pt(111) surfaces and the CO oxidation reaction on the Pt(111) surface. The effects of interactions between adsorbates, i.e., adsorbate-adsorbate lateral interactions, are examined in detail by comparing the simulations without considering lateral interactions. This study demonstrates the importance of lateral interactions in surface diffusion and reactions and the potential of our scheme for applications in a wide variety of heterogeneous catalytic reactions.

2.
Small ; : e2401987, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805737

RESUMO

Alternative strategies to design sustainable-element-based electrocatalysts enhancing oxygen evolution reaction (OER) kinetics are demanded to develop affordable yet high-performance water-electrolyzers for green hydrogen production. Here, it is demonstrated that the spontaneous-spin-polarized 2D π-d conjugated framework comprising abundant elements of nickel and iron with a ratio of Ni:Fe = 1:4 with benzenehexathiol linker (BHT) can improve OER kinetics by its unique electronic property. Among the bimetallic NiFex:y-BHTs with various ratios with Ni:Fe = x:y, the NiFe1:4-BHT exhibits the highest OER activity. The NiFe1:4-BHT shows a specific current density of 140 A g-1 at the overpotential of 350 mV. This performance is one of the best activities among state-of-the-art non-precious OER electrocatalysts and even comparable to that of the platinum-group-metals of RuO2 and IrO2. The density functional theory calculations uncover that introducing Ni into the homometallic Fe-BHT (e.g., Ni:Fe = 0:1) can emerge a spontaneous-spin-polarized state. Thus, this material can achieve improved OER kinetics with spin-polarization which previously required external magnetic fields. This work shows that a rational design of 2D π-d conjugated frameworks can be a powerful strategy to synthesize promising electrocatalysts with abundant elements for a wide spectrum of next-generation energy devices.

3.
Adv Sci (Weinh) ; 11(14): e2307674, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308139

RESUMO

Erionite (ERI) zeolite has recently attracted considerable attention for its application prospect in the selective catalytic reduction of NOx with NH3 (NH3-SCR), provided that the high-silica (Si/Al > 5.5) analog with improved hydrothermal stability can be facilely synthesized. In this work, ERI zeolites with different Si/Al ratios (4.6, 6.4, and 9.1) are synthesized through an ultrafast route, and in particular, a high-silica ERI zeolite with a Si/Al ratio of 9.1 is obtained by using faujasite (FAU) as a starting material. The solid-state 29Si MAS NMR spectroscopic study in combination with a computational simulation allows for figuring out the atomic configurations of the Al species in the three ERI zeolites. It is revealed that the ERI zeolite with the highest Si/Al ratio (ERI-9.1, where the number indicates the Si/Al ratio) exhibits a biased Al occupancy at T1 site, which is possibly due to the presence of a higher fraction of the residual potassium cations in the can cages. In contrast, the Al siting in ERI-4.6 and ERI-6.4 proves to be relatively random.

4.
J Chem Phys ; 159(5)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37526163

RESUMO

DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials known as Deep Potential (DP) models. This package, which was released in 2017, has been widely used in the fields of physics, chemistry, biology, and material science for studying atomistic systems. The current version of DeePMD-kit offers numerous advanced features, such as DeepPot-SE, attention-based and hybrid descriptors, the ability to fit tensile properties, type embedding, model deviation, DP-range correction, DP long range, graphics processing unit support for customized operators, model compression, non-von Neumann molecular dynamics, and improved usability, including documentation, compiled binary packages, graphical user interfaces, and application programming interfaces. This article presents an overview of the current major version of the DeePMD-kit package, highlighting its features and technical details. Additionally, this article presents a comprehensive procedure for conducting molecular dynamics as a representative application, benchmarks the accuracy and efficiency of different models, and discusses ongoing developments.

5.
Sci Adv ; 9(33): eadi1744, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37595044

RESUMO

Microwave (MW)-driven catalytic systems are attracting attention not only as an aggressive electrification strategy of the chemical industry but also as creating a unique catalytic reaction field that conventional equilibrium heating cannot achieve. This study unlocked direct and selective heating of single alkali metal cations in the pores of aluminosilicate zeolites under MW. Selectively heated Cs+ cations in FAU zeolite exhibited selective CH4 combustion performance, that is, COx generation at the heated Cs+ cations selectively occurred while side reactions in the low-temperature gas phase were suppressed. The Cs-O pair distribution function revealed by synchrotron-based in situ x-ray total scattering gave us direct evidence of peculiar displacement induced by MW, which was consistent with the results of molecular dynamics simulation mimicking MW heating. The concept of selective monoatomic heating by MW is expected to open a next stage in "microwave catalysis" science by providing physicochemical insights into "microwave effects."

6.
Chem Commun (Camb) ; 59(58): 8953-8956, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37376997

RESUMO

This study explores the control of Al location in zeolites by organic structure-directing agents (OSDAs) using atomistic simulations. We examine several zeolite-OSDA complexes to quantify the Al site-directing ability. The results show that OSDAs induce different energetic preferences to direct Al at certain locations. In particular, these effects can be enhanced by OSDAs with N-H moieties. Our findings will be useful for the development of novel OSDAs that can modulate Al site-directing properties.

7.
Chem Sci ; 11(31): 8214-8223, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34094176

RESUMO

Organic structure-directing agents (OSDAs) are often employed for synthesis of zeolites with desired frameworks. A priori prediction of such OSDAs has mainly relied on the interaction energies between OSDAs and zeolite frameworks, without cost considerations. For practical purposes, the cost of OSDAs becomes a critical issue. Therefore, the development of a computational de novo prediction methodology that can speed up the trial-and-error cycle in the search for less expensive OSDAs is desired. This study utilized a nature-inspired ant colony optimization method to predict physicochemically and/or economically preferable OSDAs, while also taking molecular similarity and heuristics of zeolite synthesis into consideration. The prediction results included experimentally known OSDAs, candidates having structures closely related to known OSDAs, and novel ones, suggesting the applicability of this approach.

8.
Chem Sci ; 10(37): 8533-8540, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31803428

RESUMO

In order to realize designed synthesis, understanding the formation mechanism of zeolites at an atomic level has long been aspired, but remains challenging due to the fact that the knowledge of atomic configurations of the species formed during the process is limited. We focus on a synthesis system that crystallizes CHA zeolite from FAU zeolite as the sole source of tetrahedral atoms of Si and Al, so that end-to-end characterization can be conducted. Solid-state 29Si MAS NMR is followed by high-throughput computational modeling to understand how atomic configurations changed during the interzeolite conversion. This reveals that the structural motif commonly found in FAU and CHA is not preserved during the conversion; rather, there is a specific rearrangement of silicates and aluminates within the motif. The atomic configuration of CHA seems to be influenced by that of the starting FAU, considering that CHA synthesized without using FAU results in a random Al distribution. A Metropolis Monte-Carlo simulation combined with a lattice minimization technique reveals that CHA derived from FAU has energetically favorable, biased atomic locations, which could be a result of the atomic configurations of the starting FAU. These results suggest that by choosing the appropriate reactant, Al placement could be designed to enhance the targeted properties of zeolites for catalysis and adsorption.

9.
Nat Commun ; 10(1): 4459, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575862

RESUMO

Correlating synthesis conditions and their consequences is a significant challenge, particularly for materials formed as metastable phases via kinetically controlled pathways, such as zeolites, owing to a lack of descriptors that effectively illustrate the synthesis protocols and their corresponding results. This study analyzes the synthetic records of zeolites compiled from the literature using machine learning techniques to rationalize physicochemical, structural, and heuristic insights to their chemistry. The synthesis descriptors extracted from the machine learning models are used to identify structure descriptors with the appropriate importance. A similarity network of crystal structures based on the structure descriptors shows the formation of communities populated by synthetically similar materials, including those outside the dataset. Crossover experiments based on previously overlooked structural similarities reveal the synthesis similarity of zeolites, confirming the synthesis-structure relationship. This approach is applicable to any system to rationalize empirical knowledge, populate synthesis records, and discover novel materials.

10.
Angew Chem Int Ed Engl ; 58(41): 14529-14533, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31398272

RESUMO

There is broad scientific interest in lamellar zeolitic materials for a large variety of technological applications. The traditional synthetic methods towards two-dimensional (2D) zeolitic precursors have made a great impact in the construction of families of related zeolites; however, the connection between structurally distinct 2D zeolitic precursors is much less investigated in comparison, thereby resulting in a synthetic obstacle that theoretically limits the types of zeolites that can be constructed from each layer. Herein, we report a Ge-recycling strategy for the topotactic conversion between different 2D zeolitic precursors through a three-dimensional (3D) germanosilicate. Specifically, the intermediate germanosilicate can be constructed within 150 min by taking advantage of its structural similarity with the parent lamellar precursor. This process enables the conversion of one 2D zeolite structure into another distinct structure, thus overcoming the synthetic obstacle between two families of zeolitic materials.

11.
Chemistry ; 24(37): 9247-9253, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29701311

RESUMO

Synthesis of new zeolites involving organic molecules relies heavily on the trial-and-error approach, because it is difficult to interpret the determining effects of organics on zeolite crystal symmetry. Here, the intrinsic relationships among the space-filling of organics, included volume of channels, and zeolite crystal symmetry, are systematically demonstrated by experimental and computational means. Under controlled conditions, the "dimer" and "monomer" organics of 1-ethyl-3-methylimidazolium selectively direct different, but related, germanosilicates, the ECNU-16 with a new topology and the existing IM-16 with the UOS topology, respectively. The comprehensive computational study reveals that the zeolite phase selectivity is determined by the unique space-filling behavior of the "dimer" and "monomer" organics, which is closely correlated to their rotation freedom, as well as the included volume of host zeolite channels. The elucidation of this crucial space-filling effect from the fundamental viewpoint will provide new guidelines for the rational design and synthesis of new zeolites in future.

12.
J Phys Chem Lett ; 9(7): 1778-1782, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29566491

RESUMO

The direct synthesis of hierarchically intergrown silicalite-1 can be achieved using a specific diquaternary ammonium agent. However, the location of these molecules in the zeolite framework, which is critical to understand the formation of the material, remains unclear. Where traditional characterization tools have previously failed, herein we use polarized stimulated Raman scattering (SRS) microscopy to resolve molecular organization inside few-micron-sized crystals. Through a combination of experiment and first-principles calculations, our investigation reveals the preferential location of the templating agent inside the linear pores of the MFI framework. Besides illustrating the attractiveness of SRS microscopy in the field of material science to study and spatially resolve local molecular distribution as well as orientation, these results can be exploited in the design of new templating agents for the preparation of hierarchical zeolites.

13.
Angew Chem Int Ed Engl ; 57(14): 3742-3746, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29405535

RESUMO

The Al location in zeolites can have massive influences on the zeolite properties because it directly correlates with the cationic active sites. Herein, the synthesis of IFR zeolites with controlled Al distribution at different tetrahedral sites (T sites) is reported. The computational calculations suggest that organic structure-directing agents (OSDAs) used for zeolite synthesis can alter the energetically favorable T sites for Al. Zeolite products synthesized under identical conditions but with different OSDAs are found to have altered fractions of Al at different T sites in accordance with the energies derived from the zeolite-OSDA complexes. Our finding thus provides evidence for the ability of OSDAs to direct Al into more energetically favorable T sites, thereby offering rational synthetic guidelines for the selective placement of Al into specific crystallographic sites.

14.
Angew Chem Int Ed Engl ; 56(43): 13366-13371, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-28771911

RESUMO

We report the most siliceous FAU-type zeolite, HOU-3, prepared via a one-step organic-free synthesis route. Computational studies indicate that it is thermodynamically feasible to synthesize FAU with SAR=2-7, though kinetic factors seemingly impose a more restricted upper limit for HOU-3 (SAR≈3). Our findings suggest that a slow rate of crystallization and/or low concentration of Na+ ions in HOU-3 growth mixtures facilitate Si incorporation into the framework. Interestingly, Q4 (nAl) Si speciation measured by solid-state NMR can only be modeled with a few combinations of Al positioning at tetrahedral sites in the crystal unit cell, indicating the distribution of Si(-O-Si)4-n (-O-Al)n species is spatially biased as opposed to being random. Achieving higher SAR is desirable for improved zeolite (hydro)thermal stability and enhanced catalytic performance, which we demonstrate in benchmark tests that show HOU-3 is superior to commercial zeolite Y.

15.
J Am Chem Soc ; 138(19): 6184-93, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27097121

RESUMO

The contents and locations of Al in the zeolite frameworks are one of the key factors determining the physicochemical properties of zeolites. Systematic evaluation of the characteristics of zeolites with a wide variety of framework topologies, a wide range of Si/Al ratios, and various locations of Al is of great significance, but very challenging due to the limitation of the realizable ranges of Al contents in zeolites as well as the limited information on the Al locations obtained from the current analytical techniques. Here, we report the systematic analysis of the energetics of aluminosilicate zeolites with 209 existing framework topologies at different Si/Al ratios using molecular mechanics. More than 43 000 initial structures were generated to give comprehensive views of the energetics of zeolites. The results coincide well with the structural knowledge obtained experimentally. It was revealed that the relation between the relative framework energies versus the Al contents varies in accordance with the topologies, suggesting that the relative stability of zeolites depends not only on the topologies, but also on the substituting contents of Al. For particular topologies with the same Al contents, in addition, comparisons between random and specific distributions of Al showed that zeolite with Al at a particular T site is energetically more stable than those with random distributions, suggesting the inherent influences of the Al locations. The contents and locations of Al in zeolites likely have a certain preference that may reflect the range of chemical compositions, the Al distributions, and consequently the physicochemical properties of realizable aluminosilicate zeolites.

16.
Chem Commun (Camb) ; 51(53): 10718-21, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26051853

RESUMO

Nanoporous silicas having some periodicity, high surface area (up to 1230 m(2) g(-1)), and pore diameters near the boundary between micro- and mesopores are synthesized using aromatic compounds bearing anionic end-groups as novel structure-directing agents (SDAs) that can facilitate multiple interactions between SDAs, co-SDAs and silica frameworks orthogonally.


Assuntos
Nanoporos/ultraestrutura , Dióxido de Silício/química , Espectroscopia de Ressonância Magnética , Porosidade , Silanos/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA