Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Pharm Bull ; 45(8): 1191-1197, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35908901

RESUMO

Gamma-glutamylcysteine (γ-EC) is an intermediate generated in the de novo synthesis of glutathione (GSH). Recent studies have revealed that the administration of γ-EC shows neuroprotective effects against oxidative stress in age-related disorders and chronic diseases like Alzhiemer's disease in model animals, which is not expected function in GSH. A phytochelatin synthase-like enzyme derived from Nostoc sp. (NsPCS) mediates γ-EC synthesis from GSH. To achieve low-cost and stable commercial level supply, the availability of immobilized NsPCS for γ-EC production was investigated in this study. Among the tested immobilization techniques, covalent binding to the cellulose carrier was most effective, and could convert GSH completely to γ-EC without decreasing the yield. The stable conversion of γ-EC from 100 mM GSH was achieved by both batch repeated and continuous reactions using the immobilized NsPCS on cellulose sheet and column shape monolith, respectively. The immobilization of NsPCS on those carriers is promising alternative technique for high-yielding and cost-effective production of γ-EC on its commercial applications.


Assuntos
Aminoaciltransferases , Nostoc , Aminoaciltransferases/metabolismo , Celulose , Dipeptídeos , Glutationa/metabolismo , Nostoc/metabolismo
2.
FEBS Lett ; 596(2): 180-188, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34923639

RESUMO

Gamma-glutamyl-cysteine (γ-EC) is a precursor of glutathione (GSH) biosynthesis. We investigated whether it functions as a substrate for three intracellular and one extracellular GSH metabolic enzymes, which mediate the antioxidant defence function of GSH. Among them, glutathione peroxidase, glutathione S-transferase and γ-glutamyl transferase (GGT) exhibited substrate specificity for γ-EC, whereas glutathione reductase did not. The specificities of γ-EC and its disulphide form to GGT were comparable to GSH and its oxidized form, GSSG respectively. These results indicate that they can supply GSH constituent amino acids, glutamate, cysteine and cystine through degradation by GGT. γ-EC may contribute valuable antioxidant defence properties as a food and cosmetic additive.


Assuntos
Glutamato-Cisteína Ligase
3.
Biol Pharm Bull ; 44(12): 1832-1836, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34853266

RESUMO

γ-Glutamylcysteine (γ-EC) has antioxidant properties similar to those of glutathione (GSH) and acts as its precursor in mammals. There are a few procedures for the production of γ-EC, such as chemical synthesis or enzymatic synthesis from glutamate and cysteine; however, they are very costly and not suitable for industrial production. A phytochelatin synthase-like enzyme derived from Nostoc sp. Pasteur Culture Collection 7120 (NsPCS) catalyzes the hydrolysis of GSH to γ-EC and glycine in the absence of ATP or other additives. Our research aims to establish an alternative γ-EC production procedure with low cost and high productivity. To this end, we optimized the reaction conditions of NsPCS and characterized its properties in this study. We found that 200 mM potassium phosphate buffer, pH 8.0, at 37 °C, had the highest NsPCS activity among the conditions we tested. Under these conditions, NsPCS had a Km of 385 µM and a Vmax of 26 mol/min/mg-protein. In addition, NsPCS converted 100 mM GSH into γ-EC with high yields. These results suggest that the NsPCS reaction has great potential for the low-cost, industrial-scale production of γ-EC.


Assuntos
Aminoaciltransferases/metabolismo , Antioxidantes , Dipeptídeos/biossíntese , Glutationa/metabolismo , Nostoc/enzimologia , Sequência de Aminoácidos , Antioxidantes/farmacologia , Soluções Tampão , Catálise , Química Farmacêutica , Cisteína/metabolismo , Dipeptídeos/farmacologia , Ácido Glutâmico/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Fitoquelatinas , Temperatura
4.
J Biosci Bioeng ; 123(1): 96-100, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27514909

RESUMO

Due to the presence of antibiotics in environmental water and their potential influence on the occurrence of antibiotic-resistant bacteria, development of a detection method suitable for the screening of environmental water for antibiotics is required. In this study, we developed a simple colorimetric paper-based biosensor based on a novel principle for the detection of antibiotics inhibiting bacterial protein synthesis, including aminoglycosides, tetracycline, chloramphenicol, and macrolides. This biosensor is based on the detection of a color change induced by ß-galactosidase, which is synthesized on freeze-dried paper discs containing an in vitro transcription/translation system. When a water sample without antibiotics is applied to the paper discs, ß-galactosidase can be synthesized, and it hydrolyzes a colorimetric substrate, resulting in a color change from yellow to purple. By contrast, in the presence of antibiotics, the color change can be hampered due to an inhibition of ß-galactosidase synthesis. We investigated the effect of the incubation temperature and pH of water samples and confirmed that the paper discs showed the color change to purple in the ranges of 15-37°C and pH 6-10. We observed concentration-dependent color variations of the paper discs by the naked eye and further estimated detection limits to be 0.5, 2.1, 0.8, and 6.1 µg/mL for paromomycin, tetracycline, chloramphenicol, and erythromycin, respectively, using digitized pictures. The paper-based biosensor proved to detect 0.5 µg/mL paromomycin, spiked in real environmental water samples, by the naked eye.


Assuntos
Antibacterianos/análise , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Proteínas de Bactérias/biossíntese , Técnicas Biossensoriais/métodos , Colorimetria/métodos
5.
Biotechnol Prog ; 29(5): 1197-202, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23926095

RESUMO

The development of simple, portable, inexpensive, and rapid analytical methods for detecting and monitoring toxic heavy metals are important for the safety and security of humans and their environment. Herein, we describe the application of phytochelatin (PC) synthase, which plays a critical role in heavy metal responses in higher plants and green algae, in a novel fluorescent sensing platform for cadmium (Cd). We first created surface-engineered yeast cells on which the PC synthase from Arabidopsis (AtPCS1) was displayed with retention of enzymatic activity. The general concept for the sensor is based on the Cd level-dependent synthesis of PC2 from glutathiones by AtPCS1-displaying yeast cells, followed by simple discriminative detection of PC2 via sensing of excimer fluorescence of thiol-labeling pyrene probes. The intensity of excimer fluorescence increased in the presence of Cd up to 1.0 µM in an approximately dose-dependent manner. This novel biosensor achieved a detection limit of as low as 0.2 µM (22.5 µg/L) for Cd. Although its use may be limited by the fact that Cu and Pb can induce cross-reaction, the proposed simple biosensor holds promise as a method useful for cost-effective screening of Cd contamination in environmental and food samples. The AtPCS1-displaying yeast cells also might be attractive tools for dissection of the catalytic mechanisms of PCS.


Assuntos
Aminoaciltransferases/química , Arabidopsis/enzimologia , Técnicas Biossensoriais , Pirenos , Saccharomyces cerevisiae/genética , Aminoaciltransferases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cádmio/química , Clonagem Molecular , Fluorescência , Engenharia Genética/métodos , Glutationa , Microbiologia Industrial , Pirenos/química , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA