Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Psychiatry ; 180(4): 277-284, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36069020

RESUMO

OBJECTIVE: Mitochondrial dysfunction has been implicated in the pathophysiology of autism spectrum disorder (ASD) in previous studies of postmortem brain or peripheral samples. The authors investigated whether and where mitochondrial dysfunction occurs in the living brains of individuals with ASD and to identify the clinical correlates of detected mitochondrial dysfunction. METHODS: This case-control study used positron emission tomography (PET) with 2-tert-butyl-4-chloro-5-{6-[2-(2-[18F]fluoroethoxy)-ethoxy]-pyridin-3-ylmethoxy}-2H-pyridazin-3-one ([18F]BCPP-EF), a radioligand that binds to the mitochondrial electron transport chain complex I, to examine the topographical distribution of mitochondrial dysfunction in living brains of individuals with ASD. Twenty-three adult males with high-functioning ASD, with no psychiatric comorbidities and free of psychotropic medication, and 24 typically developed males with no psychiatric diagnoses, matched with the ASD group on age, parental socioeconomic background, and IQ, underwent [18F]BCPP-EF PET measurements. Individuals with mitochondrial disease were excluded by clinical evaluation and blood tests for abnormalities in lactate and pyruvate levels. RESULTS: Among the brain regions in which mitochondrial dysfunction has been reported in postmortem studies of autistic brains, participants with ASD had significantly decreased [18F]BCPP-EF availability specifically in the anterior cingulate cortex compared with typically developed participants. The regional specificity was revealed by a significant interaction between diagnosis and brain regions. Moreover, the lower [18F]BCPP-EF availability in the anterior cingulate cortex was significantly correlated with the more severe ASD core symptom of social communication deficits. CONCLUSIONS: This study provides direct evidence to link in vivo brain mitochondrial dysfunction with ASD pathophysiology and its communicational deficits. The findings support the possibility that mitochondrial electron transport chain complex I is a novel therapeutic target for ASD core symptoms.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Encefalopatias , Masculino , Adulto , Humanos , Transtorno Autístico/diagnóstico por imagem , Transtorno do Espectro Autista/diagnóstico por imagem , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/metabolismo , Estudos de Casos e Controles , Piridinas/metabolismo , Tomografia por Emissão de Pósitrons , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Ácido Láctico/metabolismo
2.
Mol Psychiatry ; 27(4): 2106-2113, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35181754

RESUMO

The social motivation hypothesis of autism proposes that social communication symptoms in autism-spectrum disorder (ASD) stem from atypical social attention and reward networks, where dopamine acts as a crucial mediator. However, despite evidence indicating that individuals with ASD show atypical activation in extrastriatal regions while processing reward and social stimuli, no previous studies have measured extrastriatal dopamine D2/3 receptor (D2/3R) availability in ASD. Here, we investigated extrastriatal D2/3R availability in individuals with ASD and its association with ASD social communication symptoms using positron emission tomography (PET). Moreover, we employed a whole-brain multivariate pattern analysis of resting-state functional magnetic resonance imaging (fMRI) to identify regions where functional connectivity atypically correlates with D2/3R availability depending on ASD diagnosis. Twenty-two psychotropic-free males with ASD and 24 age- and intelligence quotient-matched typically developing males underwent [11C]FLB457 PET, fMRI, and clinical symptom assessment. Participants with ASD showed lower D2/3R availability throughout the D2/3R-rich extrastriatal regions of the dopaminergic pathways. Among these, the posterior region of the thalamus, which primarily comprises the pulvinar, displayed the largest effect size for the lower D2/3R availability, which correlated with a higher score on the Social Affect domain of the Autism Diagnostic Observation Schedule-2 in participants with ASD. Moreover, lower D2/3R availability was correlated with lower functional connectivity of the thalamus-superior temporal sulcus and cerebellum-medial occipital cortex, specifically in individuals with ASD. The current findings provide novel molecular evidence for the social motivation theory of autism and offer a novel therapeutic target.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno Autístico/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Comunicação , Dopamina , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Vias Neurais , Tomografia por Emissão de Pósitrons
3.
Mol Autism ; 12(1): 15, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622389

RESUMO

BACKGROUND: Oxytocin is expected as a novel therapeutic agent for autism spectrum disorder (ASD) core symptoms. However, previous results on the efficacy of repeated administrations of oxytocin are controversial. Recently, we reported time-course changes in the efficacy of the neuropeptide underlying the controversial effects of repeated administration; however, the underlying mechanisms remained unknown. METHODS: The current study explored metabolites representing the molecular mechanisms of oxytocin's efficacy using high-throughput metabolomics analysis on plasma collected before and after 6-week repeated intranasal administration of oxytocin (48 IU/day) or placebo in adult males with ASD (N = 106) who participated in a multi-center, parallel-group, double-blind, placebo-controlled, randomized controlled trial. RESULTS: Among the 35 metabolites measured, a significant increase in N,N-dimethylglycine was detected in the subjects administered oxytocin compared with those given placebo at a medium effect size (false discovery rate (FDR) corrected P = 0.043, d = 0.74, N = 83). Furthermore, subgroup analyses of the participants displaying a prominent time-course change in oxytocin efficacy revealed a significant effect of oxytocin on N,N-dimethylglycine levels with a large effect size (PFDR = 0.004, d = 1.13, N = 60). The increase in N,N-dimethylglycine was significantly correlated with oxytocin-induced clinical changes, assessed as changes in quantifiable characteristics of autistic facial expression, including both of improvements between baseline and 2 weeks (PFDR = 0.006, r = - 0.485, N = 43) and deteriorations between 2 and 4 weeks (PFDR = 0.032, r = 0.415, N = 37). LIMITATIONS: The metabolites changes caused by oxytocin administration were quantified using peripheral blood and therefore may not directly reflect central nervous system changes. CONCLUSION: Our findings demonstrate an association of N,N-dimethylglycine upregulation with the time-course change in the efficacy of oxytocin on autistic social deficits. Furthermore, the current findings support the involvement of the N-methyl-D-aspartate receptor and neural plasticity to the time-course change in oxytocin's efficacy. TRIAL REGISTRATION: A multi-center, parallel-group, placebo-controlled, double-blind, confirmatory trial of intranasal oxytocin in participants with autism spectrum disorders (the date registered: 30 October 2014; UMIN Clinical Trials Registry: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000017703 ) (UMIN000015264).


Assuntos
Transtorno Autístico/sangue , Ocitocina/administração & dosagem , Sarcosina/análogos & derivados , Administração Intranasal , Adolescente , Adulto , Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/metabolismo , Transtorno Autístico/psicologia , Método Duplo-Cego , Expressão Facial , Humanos , Masculino , Metabolômica , Pessoa de Meia-Idade , Ocitocina/sangue , Ocitocina/farmacocinética , Sarcosina/sangue , Comportamento Social , Resultado do Tratamento , Adulto Jovem
4.
Plant Physiol ; 165(4): 1575-1590, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24906355

RESUMO

The major plant polyamines (PAs) are the tetraamines spermine (Spm) and thermospermine (T-Spm), the triamine spermidine, and the diamine putrescine. PA homeostasis is governed by the balance between biosynthesis and catabolism; the latter is catalyzed by polyamine oxidase (PAO). Arabidopsis (Arabidopsis thaliana) has five PAO genes, AtPAO1 to AtPAO5, and all encoded proteins have been biochemically characterized. All AtPAO enzymes function in the back-conversion of tetraamine to triamine and/or triamine to diamine, albeit with different PA specificities. Here, we demonstrate that AtPAO5 loss-of-function mutants (pao5) contain 2-fold higher T-Spm levels and exhibit delayed transition from vegetative to reproductive growth compared with that of wild-type plants. Although the wild type and pao5 are indistinguishable at the early seedling stage, externally supplied low-dose T-Spm, but not other PAs, inhibits aerial growth of pao5 mutants in a dose-dependent manner. Introduction of wild-type AtPAO5 into pao5 mutants rescues growth and reduces the T-Spm content, demonstrating that AtPAO5 is a T-Spm oxidase. Recombinant AtPAO5 catalyzes the conversion of T-Spm and Spm to triamine spermidine in vitro. AtPAO5 specificity for T-Spm in planta may be explained by coexpression with T-Spm synthase but not with Spm synthase. The pao5 mutant lacking T-Spm oxidation and the acl5 mutant lacking T-Spm synthesis both exhibit growth defects. This study indicates a crucial role for T-Spm in plant growth and development.

5.
Biophys Rev ; 1(3): 131, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28509996

RESUMO

Imaging mass spectrometry (IMS) is two-dimensional mass spectrometry to visualize the spatial distribution of biomolecules, which does not need either separation or purification of target molecules, and enables us to monitor not only the identification of unknown molecules but also the localization of numerous molecules simultaneously. Among the ionization techniques, matrix assisted laser desorption/ionization (MALDI) is one of the most generally used for IMS, which allows the analysis of numerous biomolecules ranging over wide molecular weights. Proper selection and preparation of matrix is essential for successful imaging using IMS. Tandem mass spectrometry, which is referred to MSn, enables the structural analysis of a molecule detected by the first step of IMS. Applications of IMS were initially developed for studying proteins or peptides. At present, however, targets of IMS research have expanded to the imaging of small endogenous metabolites such as lipids, exogenous drug pharmacokinetics, exploring new disease markers, and other new scientific fields. We hope that this new technology will open a new era for biophysics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA