RESUMO
Heterogeneous noble metal catalysts exhibit various functions. Although their redox functions have been extensively studied, we focused on their soft Lewis acid functions. Supported Au, Pt, and Pd catalysts electrophilically attack the π-electrons of soft bases such as alkynes, alkenes, and aromatic compounds to perform addition and substitution reactions. Hydroamination, intramolecular cyclization of alkynyl carboxylic acids, isomerization of allylic esters, vinyl exchange reactions, Wacker oxidation, and oxidative homocoupling of aromatics are introduced based on a discussion of the active species and reaction mechanisms. Furthermore, the adsorption of sulfur compounds, which are soft bases, onto the supported AuNPs is discussed. The adsorption and removal of 1,3-dimethyltrisulfane (DMTS), which is the compound responsible for the stale odor of "hine-ka" in alcoholic beverages, particularly Japanese sake, is described.
RESUMO
A metal-organic framework (MOF) having a redox active 1,4,5,8-naphthalenetetracarboxdiimide (NDI) derivative in its organic linker shows excellent rate performance as an electrode material for aqueous batteries thanks to its large pores. Among aqueous electrolytes examined, K+-based ones exhibit the highest rate performance, which is caused by the highest mobility of the smallest hydrated K+ ion not only in the aqueous electrolyte but also in the electrode. Since the use of a counter electrode with insufficiently small pores for the full-cell configuration offsets this merit, our study may lead to a conclusion that the maximum rate performance for aqueous batteries will be accomplished only through further elaboration of both electrode materials with sufficiently large pores, in which hydrated ions can travel equally fast as those in the electrolyte.
RESUMO
The effect of the Pt shell thickness on the oxygen reduction reaction (ORR) of a Pd@Pt core-shell catalyst was studied using surface science technics and computational approaches. We found Pt shells on Pd rods to be negatively charged because of charge transfer from the Pd substrate when the shell thicknesses were 0.5 or 1 monolayer (ML). The activities of the ORR of the model surface with a Pt shell of 0.5 or 1â ML were similar and more than twice the activities of a Pt/C or Pt rod. The relationship between the ORR activity and the thickness of the Pt shell was the exact opposite of the relationship between the Pt binding energy and the Pt shell thickness. The indication was that more negatively charged Pt had higher ORR activity. Density functional theory calculations confirmed that a single layer of Pt atoms located on Pd was negatively charged compared to pure Pt and resulted in a lower barrier to the rate-limiting step of the ORR.
Assuntos
Oxigênio , Paládio , Platina , Oxirredução , CatáliseRESUMO
Carbon-nitrogen bond formation is an important method on both laboratory and industrial scales because it realizes the production of valuable pharmaceuticals, agrochemicals, and fine chemicals. Direct reductive N-alkylation of amines with carbonyl compounds via intermediary imine compounds, especially under catalytic hydrogenation conditions, is one of the most convenient, economical, and environmentally friendly methods for this process. Here we report a novel palladium species on zirconia having specific activity towards hydrogenation of imines but other carbonyl groups remaining intact. The present catalytic property offers a practical synthetic method of functionalized secondary amines by reductive N-alkylation under mild conditions with high atom-efficiency. Mechanistic studies revealed that the catalytically active species is the palladium cluster, which is generated inâ situ from molecular palladium complexes on the support by exposure to atmospheric hydrogen. These fundamental findings are expected to progress in developing novel cluster catalysts for chemical processes directed towards a sustainable society.
Assuntos
Aminas , Paládio , Alquilação , Aminas/química , Atmosfera , Catálise , Hidrogênio/química , Paládio/química , ZircônioRESUMO
The selective and efficient removal of oxygenated groups from lignin-derived phenols is a critical challenge to utilize lignin as a source for renewable aromatic chemicals. This report describes how surface modification of a zeolite-supported Pt catalyst using ionic liquids (ILs) remarkably increases selectivity for the hydrodeoxygenation (HDO) of phenols into arenes under mild reaction conditions using atmospheric pressure H2 . Unmodified Pt/H-ZSM-5 converts phenols into aliphatic species as the major products along with a slight amount of arenes (10 % selectivity). In contrast, the catalyst modified with an IL, 1-butyl-3-methylimidazolium triflate, keeps up to 76 % selectivity for arenes even at a nearly complete conversion of phenols. The IL on the surface of Pt catalyst may offer the adsorption of phenols in an edge-to-face manner onto the surface, thus accelerating the HDO without the ring hydrogenation.
RESUMO
Gold (Au) nanoparticles (NPs) supported on SiO2 (Au/SiO2) were prepared by a practical impregnation method and applied as an adsorbent for 1,3-dimethyltrisulfane (DMTS), which is responsible for an unpleasant odour in drinks, especially Japanese sake. Compared with a conventional adsorbent, activated carbon, Au/SiO2 selectively reduced the DMTS concentration in Japanese sake without decreasing the concentrations of other aromatic components. DFT calculations revealed that the selective adsorption of DMTS occurred through the formation of a stable intermediate. The size of the supported Au NPs was controlled by the preparation conditions and determined from TEM observations and XRD measurements, and the size was ranged from 2.4 nm to 30 nm. Au/SiO2 having Au NPs with a diameter of 2.4 nm adsorbed DMTS the most efficiently. Smaller Au NPs showed better DMTS adsorption capabilities because larger amounts of Au atoms were exposed on their surfaces in the size range of this study. Langmuir-type monolayer adsorption and one-to-one binding of Au-S are proposed to occur based on an adsorption isotherm experiment. Even though significant differences of the fruity aroma score were not observed in the sensory evaluation between Au/SiO2 and activated carbon for this less aromatic Japanese sake, Au/SiO2 selectively decreased the DMTS concentration in the instrumental analysis.
RESUMO
Highly efficient Wacker oxidation of aromatic or aliphatic terminal alkenes into methyl ketones and benzofurans is developed by using reusable Pd0 nanoparticles (NPs) supported on ZrO2 under acid- and cocatalyst-free conditions. Molecular oxygen or air can be utilized as the terminal oxidant, which results in the formation of H2 O as the only theoretical byproduct. The activation of the Pd NPs by O2 plays an important role in promoting this reaction. Interestingly, PdO supported on ZrO2 showed no activity. Additionally, the Pd particle size significantly affects the catalytic activity, with an apparent optimal diameter of 4-12â nm. In addition to the heterogeneous catalyst forms, the Pd NPs can be generated from a Pd0 complex during the reaction, and these particles are even recyclable.
Assuntos
Alcenos/química , Nanopartículas Metálicas/química , Paládio/química , Zircônio/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Molecular , Oxirredução , Tamanho da PartículaRESUMO
Decarbonylation of furfural to furan was efficiently catalyzed by ZrO2 -supported Pd clusters in the liquid phase under a N2 atmosphere without additives. Although Pd/C and Pd/Al2 O3 have frequently been used for decarbonylation, Pd/ZrO2 exhibited superior catalytic performance compared with these conventional catalysts. Transmission electron microscopy and X-ray absorption fine structure measurements revealed that the size of the Pd particles decreased with an increase in the specific surface area of ZrO2 . ZrO2 with a high surface area immobilized Pd as clusters consisting of several (three to five) Pd atoms, whereas Pd aggregated to form nanoparticles on other supports such as carbon and Al2 O3 despite their high surface areas. The catalytic activity of Pd/ZrO2 was enhanced with a decrease in particle size, and the smallest Pd/ZrO2 was the most active catalyst for decarbonylation. When CeO2 was used as the support, a decrease in Pd particle size with an increase in surface area was also observed. Single Pd atoms were deposited on CeO2 with a high surface area, with a strong interaction through the formation of a Pd-O-Ce bond, which led to a lower catalytic activity than that of Pd/ZrO2 . This result suggests that zero-valent small Pd clusters consisting of more than one Pd atom are the active species for the decarbonylation reaction. Recycling tests proved that Pd/ZrO2 maintained its catalytic activity until its sixth use.
Assuntos
Furaldeído/química , Furanos/química , Paládio/química , Zircônio/química , Óxido de Alumínio/química , Catálise , Cério/químicaRESUMO
LiNi0.5Mn1.5O4 (LNMO) is a promising positive electrode material for lithium ion batteries because it shows a high potential of 4.7 V vs. Li/Li(+). Its charge-discharge reaction includes two consecutive phase transitions between LiNi0.5Mn1.5O4 (Li1) â Li0.5Ni0.5Mn1.5O4 (Li0.5) and Li0.5 â Ni0.5Mn1.5O4 (Li0) and the complex transition kinetics that governs the rate capability of LNMO can hardly be analyzed by simple electrochemical techniques. Herein, we apply temperature-controlled operando X-ray absorption spectroscopy to directly capture the reacting phases from -20 °C to 40 °C under potential step (chronoamperometric) conditions and evaluate the phase transition kinetics using the apparent first-order rate constants at various temperatures. The constant for the Li1 â Li0.5 transition (process 1) is larger than that for the Li0.5 â Li0 transition (process 2) at all the measured temperatures, and the corresponding activation energies are 29 and 46 kJ mol(-1) for processes 1 and 2, respectively. The results obtained are discussed to elucidate the limiting factor in this system as well as in other electrode systems.
RESUMO
The phase transition between LiFePO4 and FePO4 during nonequilibrium battery operation was tracked in real time using time-resolved X-ray diffraction. In conjunction with increasing current density, a metastable crystal phase appears in addition to the thermodynamically stable LiFePO4 and FePO4 phases. The metastable phase gradually diminishes under open-circuit conditions following electrochemical cycling. We propose a phase transition path that passes through the metastable phase and posit the new phase's role in decreasing the nucleation energy, accounting for the excellent rate capability of LiFePO4. This study is the first to report the measurement of a metastable crystal phase during the electrochemical phase transition of LixFePO4.
RESUMO
Perylene 3,4:9,10-tetracarboxylic acid bisimide (PBI) was functionalized with ditopic cyanuric acid to organize it into complex columnar architectures through the formation of hydrogen-bonded supermacrocycles (rosette) by complexing with ditopic melamines possessing solubilizing alkoxyphenyl substituents. The aggregation study in solution using UV-vis and NMR spectroscopies showed the formation of extended aggregates through hydrogen-bonding and π-π stacking interactions. The cylindrical fibrillar nanostructures were visualized by microscopic techniques (AFM, TEM), and the formation of lyotropic mesophase was confirmed by polarized optical microscopy and SEM. X-ray diffraction study revealed that a well-defined hexagonal columnar (Col(h)) structure was formed by solution-casting of fibrillar assemblies. All of these results are consistent with the formation of hydrogen-bonded PBI rosettes that spontaneously organize into the Col(h) structure. Upon heating the Col(h) structure in the bulk state, a structural transition to a highly ordered lamellar (Lam) structure was observed by variable-temperature X-ray diffraction, differential scanning calorimetry, and AFM studies. IR study showed that the rearrangement of the hydrogen-bonding motifs occurs during the structural transition. These results suggest that such a striking structural transition is aided by the reorganization in the lowest level of self-organization, i.e., the rearrangement of hydrogen-bonded motifs from rosette to linear tape. A remarkable increase in the transient photoconductivity was observed by the flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements upon converting the Col(h) structure to the Lam structure. Transient absorption spectroscopy revealed that electron transfer from electron-donating alkoxyphenyl groups of melamine components to electron-deficient PBI moieties takes place, resulting in a higher probability of charge carrier generation in the Lam structure compared to the Col(h) structure.
RESUMO
Quick-scanning X-ray absorption fine structure (XAFS) measurements were performed in transmission mode using a PILATUS 100K pixel array detector (PAD). The method can display a two-dimensional image for a large area of the order of a centimetre with a spatial resolution of 0.2â mm at each energy point in the XAFS spectrum. The time resolution of the quick-scanning method ranged from 10â s to 1â min per spectrum depending on the energy range. The PAD has a wide dynamic range and low noise, so the obtained spectra have a good signal-to-noise ratio.
RESUMO
Discotic supramolecular complexes bearing six perylene bisimide (PBI) chromophores were prepared by mixing monotopically triple-hydrogen-bonding melamines equipped with two PBI chromophores and two 3,7-dimethyloctyl chiral handles with tritopically triple-hydrogen-bonding cyanuric acid (CA). UV/Vis and fluorescence titration experiments demonstrated that the discotic complexes were formed in methylcyclohexane by the 3:1 complexation between the melamines and CA. TEM and AFM studies revealed that the complexes hierarchically organize into fibrous columnar assemblies, which eventually results in the formation of organogels. Circular dichroism (CD) and flash-photolysis time resolved microwave conductivity measurements revealed the presence of extended chiral stacks of PBI chromophores within the columns. The anisotropy factors of the columnar assemblies are remarkably high (g=1.5×10(-3)) when considering the presence of only one 3,7-dimethyloctyl chiral handle per perylene chromophore, suggesting that the columnar structures have a biased helical sense. The fact that the chiral centers are located inside the discotic complexes rather than at their peripheries might be unique structural property responsible for the rather strong optical activities for the assemblies of this chromophore. The effective transcription of the molecular chirality to the extended columnar assemblies through the formation of unique discotic complexes enables the expression of "majority-rules" chiral amplification effect, which is unprecedented for the supramolecular assemblies of PBIs.
RESUMO
Extremely long nanofibers, whose lengths reach the millimeter regime, are generated via co-aggregation of a melamine-appended perylene bisimide semiconductor and a substituted cyanurate, both of which are ditopic triple-hydrogen-bonding building blocks; they co-aggregate in an unexpected stoichiometrically mismatched 1:2 ratio. Various microscopic and X-ray diffraction studies suggest that hydrogen-bonded polymeric chains are formed along the long axis of the nanofibers by the 1:2 complexation of the two components, which further stack along the short axis of the nanofibers. The photocarrier generation mechanism in the nanofibers is investigated by time-of-flight (TOF) experiments under electric and magnetic fields, revealing the birth and efficient recombination of singlet geminate electron-hole pairs. Flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements revealed intrinsic 1D electron mobilities up to 0.6 cm(2) V(-1) s(-1) within nanofibers.
Assuntos
Imidas/química , Nanofibras/química , Perileno/análogos & derivados , Ligação de Hidrogênio , Estrutura Molecular , Perileno/química , SemicondutoresRESUMO
A high-precision diffractometer has been developed for the structure analysis of a submicrometre-scale single grain of a powder sample at the SPring-8 BL40XU undulator beamline. The key design concept is the combination of a stable focused synchrotron radiation beam and the precise axis control of the diffractometer, which allows accurate diffraction intensity data of a submicrometre-scale single powder grain to be measured. The phase zone plate was designed to create a high-flux focused synchrotron radiation beam. A low-eccentric goniometer and high-precision sample positioning stages were adopted to ensure the alignment of a micrometre-scale focused synchrotron radiation beam onto the submicrometre-scale single powder grain. In order to verify the diffractometer performance, the diffraction pattern data of several powder grains of BaTiO(3), of dimensions approximately 600 x 600 x 300 nm, were measured. By identifying the diffraction data set of one single powder grain, the crystal structure was successfully determined with a reliable factor of 5.24%.
Assuntos
Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/instrumentação , Difração de Raios X/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Pós , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
An ultra-high-precision clock system for long time delay has been developed for picosecond time-resolved x-ray diffraction measurements using synchrotron radiation (SR) pulses and synchronized femtosecond laser pulses. The time delay control between pump laser pulse and the probe SR pulse was achieved by combining an in-phase quadrature modulator and a synchronous counter. This method allowed us to change the delay time by a nearly infinite amount while maintaining the precision of +/-8.40 ps. Time-resolved diffraction measurements using the delay control system were demonstrated for precise measurement of an acoustic velocity in a single crystal of gallium arsenide.