Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 220(Pt 12): 2218-2227, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28385799

RESUMO

Animals typically combine inertial and visual information to stabilize their gaze against confounding self-generated visual motion, and to maintain a level gaze when the body is perturbed by external forces. In vertebrates, an inner ear vestibular system provides information about body rotations and accelerations, but gaze stabilization is less understood in insects, which lack a vestibular organ. In flies, the halteres, reduced hindwings imbued with hundreds of mechanosensory cells, sense inertial forces and provide input to neck motoneurons that control gaze. These neck motoneurons also receive input from the visual system. Head movement responses to visual motion and physical rotations of the body have been measured independently, but how inertial information might influence gaze responses to visual motion has not been fully explored. We measured the head movement responses to visual motion in intact and haltere-ablated tethered flies to explore the role of the halteres in modulating visually guided head movements in the absence of rotation. We note that visually guided head movements occur only during flight. Although halteres are not necessary for head movements, the amplitude of the response is smaller in haltereless flies at higher speeds of visual motion. This modulation occurred in the absence of rotational body movements, demonstrating that the inertial forces associated with straight tethered flight are important for gaze-control behavior. The cross-modal influence of halteres on the fly's responses to fast visual motion indicates that the haltere's role in gaze stabilization extends beyond its canonical function as a sensor of angular rotations of the thorax.


Assuntos
Drosophila melanogaster/fisiologia , Voo Animal , Movimentos da Cabeça , Percepção Visual , Animais , Fenômenos Biomecânicos , Feminino , Mecanorreceptores/fisiologia , Asas de Animais/fisiologia
2.
Biol Lett ; 11(11)2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26601682

RESUMO

The halteres of flies are mechanosensory organs that provide information about body rotations during flight. We measured haltere movements in a range of fly taxa during free walking and tethered flight. We find a diversity of wing-haltere phase relationships in flight, with higher variability in more ancient families and less in more derived families. Diverse haltere movements were observed during free walking and were correlated with phylogeny. We predicted that haltere removal might decrease behavioural performance in those flies that move them during walking and provide evidence that this is the case. Our comparative approach reveals previously unknown diversity in haltere movements and opens the possibility of multiple functional roles for halteres in different fly behaviours.


Assuntos
Dípteros/fisiologia , Animais , Comportamento Animal , Fenômenos Biomecânicos , Voo Animal/fisiologia , Mecanorreceptores/fisiologia , Movimento , Filogenia , Caminhada/fisiologia , Asas de Animais/fisiologia
3.
J Exp Biol ; 218(Pt 16): 2528-37, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26113141

RESUMO

In flies, mechanosensory information from modified hindwings known as halteres is combined with visual information for wing-steering behavior. Haltere input is necessary for free flight, making it difficult to study the effects of haltere ablation under natural flight conditions. We thus used tethered Drosophila melanogaster flies to examine the relationship between halteres and the visual system, using wide-field motion or moving figures as visual stimuli. Haltere input was altered by surgically decreasing its mass, or by removing it entirely. Haltere removal does not affect the flies' ability to flap or steer their wings, but it does increase the temporal frequency at which they modify their wingbeat amplitude. Reducing the haltere mass decreases the optomotor reflex response to wide-field motion, and removing the haltere entirely does not further decrease the response. Decreasing the mass does not attenuate the response to figure motion, but removing the entire haltere does attenuate the response. When flies are allowed to control a visual stimulus in closed-loop conditions, haltereless flies fixate figures with the same acuity as intact flies, but cannot stabilize a wide-field stimulus as accurately as intact flies can. These manipulations suggest that the haltere mass is influential in wide-field stabilization, but less so in figure tracking. In both figure and wide-field experiments, we observe responses to visual motion with and without halteres, indicating that during tethered flight, intact halteres are not strictly necessary for visually guided wing-steering responses. However, the haltere feedback loop may operate in a context-dependent way to modulate responses to visual motion.


Assuntos
Drosophila melanogaster/fisiologia , Animais , Fenômenos Biomecânicos , Feminino , Voo Animal/fisiologia , Mecanorreceptores/fisiologia , Reflexo , Asas de Animais/fisiologia
4.
Am J Physiol Heart Circ Physiol ; 304(4): H600-9, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23241322

RESUMO

Mesenchymal stem cells (MSCs) were shown to improve cell survival and alleviate cardiac arrhythmias when transplanted into cardiac tissue; however, little is known about the mechanism by which MSCs modify the electrophysiological properties of cardiac tissue. We aimed to distinguish the influence of cell-cell coupling between myocytes and MSCs from that of MSC-derived paracrine factors on the spontaneous activity and conduction velocity (θ) of multicellular cardiomyocyte preparations. HL-1 cells were plated on microelectrode arrays and their spontaneous activity and θ was determined from field potential recordings. In heterocellular cultures of MSCs and HL-1 cells the beating frequency was attenuated (t(0h): 2.26 ± 0.18 Hz; t(4h): 1.98 ± 0.26 Hz; P < 0.01) concomitant to the intercellular coupling between MSCs and cardiomyocytes. In HL-1 monolayers supplemented with MSC conditioned media (ConM) or tyrode (ConT) θ significantly increased in a time-dependent manner (ConT: t(0h): 2.4 cm/s ± 0.2; t(4h): 3.1 ± 0.4 cm/s), whereas the beating frequency remained constant. Connexin (Cx)43 mRNA and protein expression levels also increased after ConM or ConT treatment over the same time period. Enhanced low-density lipoprotein receptor-related protein 6 (LRP6) phosphorylation after ConT treatment implicates the Wnt signaling pathway. Suppression of Wnt secretion from MSCs (IWP-2; 5 µmol/l) reduced the efficacy of ConT to induce phospho-LRP6 and to increase θ. Inhibition of ß-catenin (cardamonin; 10 µmol/l) or GSK3-α/ß (LiCl; 5 mmol/l) also suppressed changes in θ, further supporting the hypothesis that MSC-mediated Cx43 upregulation occurs in part through secreted Wnt ligands and activation of the canonical Wnt signaling pathway.


Assuntos
Conexina 43/biossíntese , Sistema de Condução Cardíaco/fisiologia , Transplante de Células-Tronco Mesenquimais , Comunicação Parácrina/fisiologia , Regulação para Cima/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Linhagem Celular , Chalconas/farmacologia , Meios de Cultivo Condicionados , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/enzimologia , Cloreto de Lítio/farmacologia , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/fisiologia , Comunicação Parácrina/efeitos dos fármacos , Fosforilação , Regulação para Cima/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA