Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 8(10): e11171, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36325145

RESUMO

Acquired resistance during cancer treatment is unfortunately a frequent event. There are several reasons for this, including the ability of the ATP-binding cassette transporters (ABC transporters), which are integral membrane proteins, to export chemotherapeutic molecules from the interior of the tumor cells. One important member of this family is the protein known as Permeability Glycoprotein (P-Glycoprotein, P-gp or ABCB1). Its clinical relevance relies mainly on the fact that the inhibition of P-gp and other ABC transporters could result in the reversal of the multidrug resistance (MDR) phenotype in some patients. Recently, other roles apart from being a key player in MDR, have emerged for P-gp. Therefore, this review discusses the relationship between P-gp and MDR, in addition to the possible role of this protein as a biomarker in cancer.

2.
BMC Cancer ; 21(1): 1248, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34798868

RESUMO

BACKGROUND: Glioblastoma is a fatal brain tumour with a poor patient survival outcome. Hypoxia has been shown to reprogram cells towards a stem cell phenotype associated with self-renewal and drug resistance properties. Activation of hypoxia-inducible factors (HIFs) helps in cellular adaptation mechanisms under hypoxia. Similarly, miRNAs are known to be dysregulated in GBM have been shown to act as critical mediators of the hypoxic response and to regulate key processes involved in tumorigenesis. METHODS: Glioblastoma (GBM) cells were exposed to oxygen deprivation to mimic a tumour microenvironment and different cell aspects were analysed such as morphological changes and gene expression of miRNAs and survival genes known to be associated with tumorigenesis. RESULTS: It was observed that miR-128a-3p, miR-34-5p, miR-181a/b/c, were down-regulated in 6 GBM cell lines while miR-17-5p and miR-221-3p were upregulated when compared to a non-GBM control. When the same GBM cell lines were cultured under hypoxic microenvironment, a further 4-10-fold downregulation was observed for miR-34-5p, miR-128a-3p and 181a/b/c while a 3-6-fold upregulation was observed for miR-221-3p and 17-5p for most of the cells. Furthermore, there was an increased expression of SOX2 and Oct4, GLUT-1, VEGF, Bcl-2 and survivin, which are associated with a stem-like state, increased metabolism, altered angiogenesis and apoptotic escape, respectively. CONCLUSION: This study shows that by mimicking a tumour microenvironment, miRNAs are dysregulated, stemness factors are induced and alteration of the survival genes necessary for the cells to adapt to the micro-environmental factors occurs. Collectively, these results might contribute to GBM aggressiveness.


Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , MicroRNAs/metabolismo , Hipóxia Tumoral/genética , Microambiente Tumoral/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Regulação para Baixo , Genótipo , Glioblastoma/metabolismo , Glioblastoma/patologia , Transportador de Glucose Tipo 1/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Survivina/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Cancer Biol Med ; 17(2): 253-269, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32587767

RESUMO

The ATP-binding cassette transporters (ABC transporters) have been intensely studied over the past 50 years for their involvement in the multidrug resistance (MDR) phenotype, especially in cancer. They are frequently overexpressed in both naive and post-treatment tumors, and hinder effective chemotherapy by reducing drug accumulation in cancer cells. In the last decade however, several studies have established that ABC transporters have additional, fundamental roles in tumor biology; there is strong evidence that these proteins are involved in transporting tumor-enhancing molecules and/or in protein-protein interactions that impact cancer aggressiveness, progression, and patient prognosis. This review highlights these studies in relation to some well-described cancer hallmarks, in an effort to re-emphasize the need for further investigation into the physiological functions of ABC transporters that are critical for tumor development. Unraveling these new roles offers an opportunity to define new strategies and targets for therapy, which would include endogenous substrates or signaling pathways that regulate these proteins.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistência a Múltiplos Medicamentos/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Neoplasias/fisiopatologia , Humanos , Células-Tronco Neoplásicas , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA