Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Mol Metab ; 85: 101947, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38677509

RESUMO

OBJECTIVE: Type 2 diabetes (T2D) is characterised by the loss of first-phase insulin secretion. We studied mice with ß-cell selective loss of the glucagon receptor (Gcgrfl/fl X Ins-1Cre), to investigate the role of intra-islet glucagon receptor (GCGR) signalling on pan-islet [Ca2+]I activity and insulin secretion. METHODS: Metabolic profiling was conducted on Gcgrß-cell-/- and littermate controls. Crossing with GCaMP6f (STOP flox) animals further allowed for ß-cell specific expression of a fluorescent calcium indicator. These islets were functionally imaged in vitro and in vivo. Wild-type mice were transplanted with islets expressing GCaMP6f in ß-cells into the anterior eye chamber and placed on a high fat diet. Part of the cohort received a glucagon analogue (GCG-analogue) for 40 days and the control group were fed to achieve weight matching. Calcium imaging was performed regularly during the development of hyperglycaemia and in response to GCG-analogue treatment. RESULTS: Gcgrß-cell-/- mice exhibited higher glucose levels following intraperitoneal glucose challenge (control 12.7 mmol/L ± 0.6 vs. Gcgrß-cell-/- 15.4 mmol/L ± 0.0 at 15 min, p = 0.002); fasting glycaemia was not different to controls. In vitro, Gcgrß-cell-/- islets showed profound loss of pan-islet [Ca2+]I waves in response to glucose which was only partially rescued in vivo. Diet induced obesity and hyperglycaemia also resulted in a loss of co-ordinated [Ca2+]I waves in transplanted islets. This was reversed with GCG-analogue treatment, independently of weight-loss (n = 8). CONCLUSION: These data provide novel evidence for the role of intra-islet GCGR signalling in sustaining synchronised [Ca2+]I waves and support a possible therapeutic role for glucagonergic agents to restore the insulin secretory capacity lost in T2D.

2.
Int J Obes (Lond) ; 41(11): 1693-1701, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28792489

RESUMO

OBJECTIVE: High-protein diets (HPDs) are associated with greater satiety and weight loss than diets rich in other macronutrients. The exact mechanisms by which HPDs exert their effects are unclear. However, evidence suggests that the sensing of amino acids produced as a result of protein digestion may have a role in appetite regulation and satiety. We investigated the effects of l-phenylalanine (L-Phe) on food intake and glucose homeostasis in rodents. METHODS: We investigated the effects of the aromatic amino-acid and calcium-sensing receptor (CaSR) agonist l-phenylalanine (L-Phe) on food intake and the release of the gastrointestinal (GI) hormones peptide YY (PYY), glucagon-like peptide-1 (GLP-1) and ghrelin in rodents, and the role of the CaSR in mediating these effects in vitro and in vivo. We also examined the effect of oral l-Phe administration on glucose tolerance in rats. RESULTS: Oral administration of l-Phe acutely reduced food intake in rats and mice, and chronically reduced food intake and body weight in diet-induced obese mice. Ileal l-Phe also reduced food intake in rats. l-Phe stimulated GLP-1 and PYY release, and reduced plasma ghrelin, and also stimulated insulin release and improved glucose tolerance in rats. Pharmacological blockade of the CaSR attenuated the anorectic effect of intra-ileal l-Phe in rats, and l-Phe-induced GLP-1 release from STC-1 and primary L cells was attenuated by CaSR blockade. CONCLUSIONS: l-Phe reduced food intake, stimulated GLP-1 and PYY release, and reduced plasma ghrelin in rodents. Our data provide evidence that the anorectic effects of l-Phe are mediated via the CaSR, and suggest that l-Phe and the CaSR system in the GI tract may have therapeutic utility in the treatment of obesity and diabetes. Further work is required to determine the physiological role of the CaSR in protein sensing in the gut, and the role of this system in humans.


Assuntos
Depressores do Apetite/farmacologia , Regulação do Apetite/efeitos dos fármacos , Hormônios Gastrointestinais/metabolismo , Intolerância à Glucose , Fenilalanina/farmacologia , Receptores de Detecção de Cálcio/metabolismo , Saciação/efeitos dos fármacos , Animais , Depressores do Apetite/administração & dosagem , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenilalanina/administração & dosagem , Ratos , Ratos Wistar , Receptores dos Hormônios Gastrointestinais/metabolismo
3.
Aliment Pharmacol Ther ; 44(7): 662-72, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27464984

RESUMO

BACKGROUND: Short-chain fatty acids (SCFA) produced through fermentation of nondigestible carbohydrates by the gut microbiota are associated with positive metabolic effects. However, well-controlled trials are limited in humans. AIMS: To develop a methodology to deliver SCFA directly to the colon, and to optimise colonic propionate delivery in humans, to determine its role in appetite regulation and food intake. METHODS: Inulin SCFA esters were developed and tested as site-specific delivery vehicles for SCFA to the proximal colon. Inulin propionate esters containing 0-61 wt% (IPE-0-IPE-61) propionate were assessed in vitro using batch faecal fermentations. In a randomised, controlled, crossover study, with inulin as control, ad libitum food intake (kcal) was compared after 7 days on IPE-27 or IPE-54 (10 g/day all treatments). Propionate release was determined using (13) C-labelled IPE variants. RESULTS: In vitro, IPE-27-IPE-54 wt% propionate resulted in a sevenfold increase in propionate production compared with inulin (P < 0.05). In vivo, IPE-27 led to greater (13) C recovery in breath CO2 than IPE-54 (64.9 vs. 24.9%, P = 0.001). IPE-27 also led to a reduction in energy intake during the ad libitum test meal compared with both inulin (439.5 vs. 703.9 kcal, P = 0.025) and IPE-54 (439.5 vs. 659.3 kcal, P = 0.025), whereas IPE-54 was not significantly different from inulin control. CONCLUSIONS: IPE-27 significantly reduced food intake suggesting colonic propionate plays a role in appetite regulation. Inulin short-chain fatty acid esters provide a novel tool for probing the diet-gut microbiome-host metabolism axis in humans.


Assuntos
Colo/metabolismo , Ácidos Graxos Voláteis/administração & dosagem , Inulina/administração & dosagem , Adulto , Estudos Cross-Over , Ingestão de Alimentos , Ingestão de Energia , Ésteres/química , Ácidos Graxos Voláteis/metabolismo , Fezes , Fermentação , Humanos , Masculino , Pessoa de Meia-Idade , Propionatos
4.
Diabetes Obes Metab ; 18(5): 508-18, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26863991

RESUMO

AIMS: To investigate the anorectic effect of L-arginine (L-Arg) in rodents. METHODS: We investigated the effects of L-Arg on food intake, and the role of the anorectic gut hormones glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), the G-protein-coupled receptor family C group 6 member A (GPRC6A) and the vagus nerve in mediating these effects in rodents. RESULTS: Oral gavage of L-Arg reduced food intake in rodents, and chronically reduced cumulative food intake in diet-induced obese mice. Lack of the GPRC6A in mice and subdiaphragmatic vagal deafferentation in rats did not influence these anorectic effects. L-Arg stimulated GLP-1 and PYY release in vitro and in vivo. Pharmacological blockade of GLP-1 and PYY receptors did not influence the anorectic effect of L-Arg. L-Arg-mediated PYY release modulated net ion transport across the gut mucosa. Intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) administration of L-Arg suppressed food intake in rats. CONCLUSIONS: L-Arg reduced food intake and stimulated gut hormone release in rodents. The anorectic effect of L-Arg is unlikely to be mediated by GLP-1 and PYY, does not require GPRC6A signalling and is not mediated via the vagus. I.c.v. and i.p. administration of L-Arg suppressed food intake in rats, suggesting that L-Arg may act on the brain to influence food intake. Further work is required to determine the mechanisms by which L-Arg suppresses food intake and its utility in the treatment of obesity.


Assuntos
Depressores do Apetite/uso terapêutico , Arginina/uso terapêutico , Suplementos Nutricionais , Fármacos Gastrointestinais/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/agonistas , Obesidade/dietoterapia , Peptídeo YY/agonistas , Animais , Depressores do Apetite/administração & dosagem , Depressores do Apetite/efeitos adversos , Depressores do Apetite/farmacologia , Arginina/administração & dosagem , Arginina/efeitos adversos , Células Cultivadas , Suplementos Nutricionais/efeitos adversos , Ingestão de Energia/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Fármacos Gastrointestinais/administração & dosagem , Fármacos Gastrointestinais/efeitos adversos , Fármacos Gastrointestinais/farmacologia , Peptídeo 1 Semelhante ao Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Técnicas In Vitro , Injeções Intraperitoneais , Injeções Intraventriculares , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/patologia , Peptídeo YY/sangue , Peptídeo YY/metabolismo , Distribuição Aleatória , Ratos Wistar , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Redução de Peso/efeitos dos fármacos
5.
Endocrinology ; 156(7): 2619-31, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25875299

RESUMO

Kisspeptin plays a critical role in pubertal timing and reproductive function. In rodents, kisspeptin perikarya within the hypothalamic arcuate (ARC) and anteroventral periventricular (AVPV) nuclei are thought to be involved in LH pulse and surge generation, respectively. Using bilateral microinjections of recombinant adeno-associated virus encoding kisspeptin antisense into the ARC or AVPV of female rats at postnatal day 10, we investigated the relative importance of these two kisspeptin populations in the control of pubertal timing, estrous cyclicity, and LH surge and pulse generation. A 37% knockdown of kisspeptin in the AVPV resulted in a significant delay in vaginal opening and first vaginal estrous, abnormal estrous cyclicity, and reduction in the occurrence of spontaneous LH surges, although these retained normal amplitude. This AVPV knockdown had no effect on LH pulse frequency, measured after ovariectomy. A 32% reduction of kisspeptin in the ARC had no effect on the onset of puberty but resulted in abnormal estrous cyclicity and decreased LH pulse frequency. Additionally, the knockdown of kisspeptin in the ARC decreased the amplitude but not the incidence of LH surges. These results might suggest that the role of AVPV kisspeptin in the control of pubertal timing is particularly sensitive to perturbation. In accordance with our previous studies, ARC kisspeptin signaling was critical for normal pulsatile LH secretion in female rats. Despite the widely reported role of AVPV kisspeptin neurons in LH surge generation, this study suggests that both AVPV and ARC populations are essential for normal LH surges and estrous cyclicity.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Ciclo Estral/genética , Hipotálamo Anterior/metabolismo , Kisspeptinas/genética , Neurônios/metabolismo , Puberdade/genética , Maturidade Sexual/genética , Animais , Núcleo Arqueado do Hipotálamo/citologia , Ciclo Estral/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Hipotálamo Anterior/citologia , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Neurônios/citologia , Puberdade/metabolismo , Ratos
6.
Andrology ; 3(2): 293-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25645013

RESUMO

Military training has been associated with changes in the hypothalamic-pituitary-gonadal axis consistent with central hypogonadism. Often such changes have been associated with body mass loss, though sleep deprivation and other psychological stress may also contribute. The effects of deployment in a combat zone on the hypothalamic-pituitary-gonadal axis in military personnel are not known. The objective was to investigate the hypothalamic-pituitary-gonadal axis in male military personnel deployed in Afghanistan. Eighty-nine Royal Marines were investigated pre-deployment, following 3 months in Afghanistan and following 2 weeks mid-tour leave. Testosterone, sex hormone-binding globulin (SHBG), follicle-stimulating hormone (FSH), luteinising hormone (LH), 17-hydroxyprogesterone, androstenedione (AD) and insulin were assayed and body mass recorded. The results showed that body mass (kg) dropped from 83.2 ± 9.2 to 79.2 ± 8.2 kg during the first 3 months of deployment (p < 0.001). Total testosterone did not change, but SHBG increased (30.7 ± 9.7 vs. 42.3 ± 14.1 nmol/L, p < 0.001), resulting in a significant (p < 0.001) fall in calculated free testosterone (435.2 ± 138 vs. 375.1 ± 98 pmol/L). Luteinising hormone and FSH increased by 14.3% (p < 0.001) and 4.9% (p = 0.003) respectively. Free testosterone, SHBG, LH and FSH returned to baseline following 2 weeks of mid-tour leave. Androstenedione (AD) decreased by 14.5% (p = 0.024), and insulin decreased by 26% (p = 0.039), over the course of deployment. In this study of lean Royal Marines, free testosterone decreased during operational deployment to Afghanistan. There was no evidence to suggest major stress-induced central hypogonadism. We postulate that reduced body mass, accompanied by a decrease in insulin and AD synthesis, may have contributed to an elevated SHBG, leading to a decrease in free testosterone.


Assuntos
Sistema Hipotálamo-Hipofisário , Militares , Testículo/fisiologia , Campanha Afegã de 2001- , Afeganistão , Humanos , Masculino , Esteroides/sangue , Reino Unido
7.
J Clin Endocrinol Metab ; 100(4): 1520-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25664601

RESUMO

CONTEXT: Prognosis in patients with neuroendocrine tumors (NETs) is often poor, frequently reflecting delayed diagnosis. Hence, accurate and practical NET markers are needed. Cocaine- and amphetamine-regulated transcript (CART) peptide is a potential novel NET marker. DESIGN AND PARTICIPANTS: Circulating levels of CART peptide and the established NET markers chromogranin A (CgA) and chromogranin B (CgB) were measured using RIA in 353 patients with NET (normal renal function) and in controls. Clinical data were collected retrospectively. MAIN OUTCOME MEASURE(S): The comparative and combined utility of CART, CgA, and CgB for diagnosis and assessment of disease progression was measured in different NET subtypes. RESULTS: CgA and CgB in combination improved diagnostic accuracy in patients with gut NETs, nongastroenteropancreatic NETs, and NETs with an unknown primary origin compared with each biomarker alone. Measuring CART did not further improve diagnosis in these NET subtypes. For pancreatic NETs, CgB was superior to CgA and CART in detecting stable disease (P < .007), whereas CgA and CART in combination were most effective in identifying progressive disease. In phaeochromocytomas/paragangliomas (PCC/PGL), CART was the most useful biomarker for identifying stable (P < .001) and progressive (P = .001) disease. Consistent with this, plasma CART decreased following PCC/PGL tumor resection, remaining low in all patients in remission, but increasing in those with progressive disease. CONCLUSIONS: CART is a useful marker for identifying progressive pancreatic NETs. CART is superior to CgA and CgB in detecting stable and progressive PCC/PGLs, and may have a role as a surveillance marker for PCC/PGL patients.


Assuntos
Neoplasias das Glândulas Suprarrenais/diagnóstico , Biomarcadores Tumorais/sangue , Cromogranina A/sangue , Cromogranina B/sangue , Proteínas do Tecido Nervoso/sangue , Tumores Neuroendócrinos/diagnóstico , Paraganglioma/diagnóstico , Feocromocitoma/diagnóstico , Neoplasias das Glândulas Suprarrenais/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Técnicas de Diagnóstico Endócrino , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tumores Neuroendócrinos/sangue , Paraganglioma/sangue , Feocromocitoma/sangue , Valor Preditivo dos Testes , Prognóstico , Estudos Retrospectivos , Adulto Jovem
8.
Int J Obes (Lond) ; 39(3): 424-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25109781

RESUMO

BACKGROUND AND OBJECTIVES: The gut hormones peptide YY (PYY) and glucagon-like peptide 1 (GLP-1) acutely suppress appetite. The short chain fatty acid (SCFA) receptor, free fatty acid receptor 2 (FFA2) is present on colonic enteroendocrine L cells, and a role has been suggested for SCFAs in appetite regulation. Here, we characterise the in vitro and in vivo effects of colonic propionate on PYY and GLP-1 release in rodents, and investigate the role of FFA2 in mediating these effects using FFA2 knockout mice. METHODS: We used Wistar rats, C57BL6 mice and free fatty acid receptor 2 knockout (FFA(-/-)) mice on a C57BL6 background to explore the impact of the SCFA propionate on PYY and GLP-1 release. Isolated colonic crypt cultures were used to assess the effects of propionate on gut hormone release in vitro. We subsequently developed an in vivo technique to assess gut hormone release into the portal vein following colonic infusion of propionate. RESULTS: Propionate stimulated the secretion of both PYY and GLP-1 from wild-type primary murine colonic crypt cultures. This effect was significantly attenuated in cultures from FFA2(-/-) mice. Intra-colonic infusion of propionate elevated PYY and GLP-1 levels in jugular vein plasma in rats and in portal vein plasma in both rats and mice. However, propionate did not significantly stimulate gut hormone release in FFA2(-/-) mice. CONCLUSIONS: Intra-colonic administration of propionate stimulates the concurrent release of both GLP-1 and PYY in rats and mice. These data demonstrate that FFA2 deficiency impairs SCFA-induced gut hormone secretion both in vitro and in vivo.


Assuntos
Colo/patologia , Hormônios Gastrointestinais/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo YY/metabolismo , Propionatos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Colo/metabolismo , Peptídeo 1 Semelhante ao Glucagon/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/efeitos dos fármacos
9.
Int J Obes (Lond) ; 39(3): 447-55, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25219528

RESUMO

BACKGROUND: High-protein diets promote weight loss and subsequent weight maintenance, but are difficult to adhere to. The mechanisms by which protein exerts these effects remain unclear. However, the amino acids produced by protein digestion may have a role in driving protein-induced satiety. METHODS: We tested the effects of a range of amino acids on food intake in rodents and identified l-cysteine as the most anorexigenic. Using rodents we further studied the effect of l-cysteine on food intake, behaviour and energy expenditure. We proceeded to investigate its effect on neuronal activation in the hypothalamus and brainstem before investigating its effect on gastric emptying and gut hormone release. The effect of l-cysteine on appetite scores and gut hormone release was then investigated in humans. RESULTS: l-Cysteine dose-dependently decreased food intake in both rats and mice following oral gavage and intraperitoneal administration. This effect did not appear to be secondary to behavioural or aversive side effects. l-Cysteine increased neuronal activation in the area postrema and delayed gastric emptying. It suppressed plasma acyl ghrelin levels and did not reduce food intake in transgenic ghrelin-overexpressing mice. Repeated l-cysteine administration decreased food intake in rats and obese mice. l-Cysteine reduced hunger and plasma acyl ghrelin levels in humans. CONCLUSIONS: Further work is required to determine the chronic effect of l-cysteine in rodents and humans on appetite and body weight, and whether l-cysteine contributes towards protein-induced satiety.


Assuntos
Depressores do Apetite/farmacologia , Apetite/efeitos dos fármacos , Cisteína/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Grelina/antagonistas & inibidores , Adulto , Animais , Depressores do Apetite/administração & dosagem , Cisteína/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Hormônios Gastrointestinais/metabolismo , Grelina/metabolismo , Humanos , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro , Ratos , Ratos Wistar , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores de Neuropeptídeos/metabolismo , Saciação
10.
J Endocrinol ; 221(2): 337-46, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24578294

RESUMO

Relaxin-3 is a member of the insulin superfamily. It is expressed in the nucleus incertus of the brainstem, which has projections to the hypothalamus. Relaxin-3 binds with high affinity to RXFP1 and RXFP3. RXFP3 is expressed within the hypothalamic paraventricular nucleus (PVN), an area central to the stress response. The physiological function of relaxin-3 is unknown but previous work suggests a role in appetite control, stimulation of the hypothalamic-pituitary-gonadal axis and stress. Central administration of relaxin-3 induces c-fos expression in the PVN and increases plasma ACTH levels in rats. The aim of this study was to investigate the effect of central administration of human relaxin-3 (H3) on the hypothalamic-pituitary-adrenal (HPA) axis in male rodents in vivo and in vitro. Intracerebroventricular (i.c.v) administration of H3 (5 nmol) significantly increased plasma corticosterone at 30 min following injection compared with vehicle. Intra-PVN administration of H3 (1.8-1620 pmol) significantly increased plasma ACTH at 1620 pmol H3 and corticosterone at 180-1620 pmol H3 at 30 min following injection compared with vehicle. The stress hormone prolactin was also significantly raised at 15 min post-injection compared with vehicle. Treatment of hypothalamic explants with H3 (10-1000 nM) stimulated the release of corticotrophin-releasing hormone (CRH) and arginine vasopressin (AVP), but H3 had no effect on the release of ACTH from in vitro pituitary fragments. These results suggest that relaxin-3 may regulate the HPA axis, via hypothalamic CRH and AVP neurons. Relaxin-3 may act as a central signal linking nutritional status, reproductive function and stress.


Assuntos
Hormônio Liberador da Corticotropina/fisiologia , Proteínas do Tecido Nervoso/farmacologia , Sistemas Neurossecretores/efeitos dos fármacos , Relaxina/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Hormônio Adrenocorticotrópico/metabolismo , Animais , Corticosterona/metabolismo , Regulação para Baixo/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Injeções Intraventriculares , Masculino , Sistemas Neurossecretores/metabolismo , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
11.
Endocrinology ; 155(3): 1091-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24424033

RESUMO

Kisspeptin plays a pivotal role in pubertal onset and reproductive function. In rodents, kisspeptin perikarya are located in 2 major populations: the anteroventral periventricular nucleus and the hypothalamic arcuate nucleus (ARC). These nuclei are believed to play functionally distinct roles in the control of reproduction. The anteroventral periventricular nucleus population is thought to be critical in the generation of the LH surge. However, the physiological role played by the ARC kisspeptin neurons remains to be fully elucidated. We used bilateral stereotactic injection of recombinant adeno-associated virus encoding kisspeptin antisense into the ARC of adult female rats to investigate the physiological role of kisspeptin neurons in this nucleus. Female rats with kisspeptin knockdown in the ARC displayed a significantly reduced number of both regular and complete oestrous cycles and significantly longer cycles over the 100-day period of the study. Further, kisspeptin knockdown in the ARC resulted in a decrease in LH pulse frequency. These data suggest that maintenance of ARC-kisspeptin levels is essential for normal pulsatile LH release and oestrous cyclicity.


Assuntos
Núcleo Arqueado do Hipotálamo/citologia , Regulação da Expressão Gênica , Kisspeptinas/fisiologia , Neurônios/metabolismo , Reprodução/fisiologia , Animais , Estradiol/metabolismo , Ciclo Estral , Retroalimentação Fisiológica , Feminino , Proteínas de Fluorescência Verde/metabolismo , Imunoensaio , Kisspeptinas/genética , Hormônio Luteinizante/metabolismo , Oligonucleotídeos Antissenso/genética , Ratos , Ratos Wistar , Proteínas Recombinantes/genética , Fatores de Tempo
12.
Vet Pathol ; 51(3): 695-706, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23860008

RESUMO

Obesity is a leading cause of morbidity and mortality worldwide. There is still a wide disparity between the necessity and availability of safe and effective antiobesity pharmacotherapies. Current drugs are associated with adverse effects and are limited in their efficacy. There is thus an urgent need for new antiobesity agents. Animal models are critical to the study of the biological mechanisms underpinning energy homeostasis and obesity and provide useful tools for the development of novel antiobesity agents. Our understanding of the complex neuronal and hormonal systems that regulate appetite and body weight has largely been based on studies in animals. This review describes the physiological basis of appetite, rodent models used in the development of antiobesity drugs, and potential future targets for novel antiobesity agents.


Assuntos
Fármacos Antiobesidade/síntese química , Fármacos Antiobesidade/farmacologia , Apetite/fisiologia , Modelos Animais de Doenças , Descoberta de Drogas/métodos , Obesidade/tratamento farmacológico , Animais , Fármacos Antiobesidade/efeitos adversos , Apetite/efeitos dos fármacos , Gatos , Grelina/farmacologia , Humanos , Camundongos , Oxintomodulina/farmacologia , Primatas , Ratos , Suínos
13.
Regul Pept ; 187: 6-11, 2013 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-24120470

RESUMO

Neuromedin B (NMB) is a highly conserved bombesin-related peptide found in mammals. NMB mRNA is detected in the central nervous system (CNS) and is highly expressed in the rat hypothalamus, in particular the medial preoptic area and the arcuate nucleus. The mammalian bombesin family of receptors consists of three closely related G protein coupled receptors, BB1, BB2 and BB3. The BB1 receptor subtype has the highest affinity for NMB. NMB has well documented roles in the regulation of the thyroid axis and the stress axis in rats. However, there is little available data regarding the role of NMB in the regulation of the hypothalamic-pituitary-gonadal (HPG) axis. It is known that the NMB receptor is expressed in immortalised gonadotrophin releasing hormone (GnRH) releasing GT1-7 cells and murine forebrain GnRH neurons, and that anterior pituitary NMB-immunoreactivity is altered by changes in the sex steroid environment. The objective of these studies was thus to further investigate the effects of NMB on the HPG axis. Intracerebroventricular (ICV) administration of NMB (10 nmol) to adult male rats significantly increased plasma luteinising hormone (LH) levels 30 min after injection (plasma LH ng/ml; saline 0.69±0.07, 10 nmol NMB 1.33±0.17, P<0.01). In vitro, NMB stimulated GnRH release from hypothalamic explants from male rats and from hypothalamic GT1-7 cells. NMB had no significant effect on LH release from anterior pituitary explants from male rats, or from pituitary LßT2 cells in vitro. These results suggest a previously unreported role for NMB in the stimulation of the HPG axis via hypothalamic GnRH. Further work is now required to determine the receptor mediating the effects of NMB on the reproductive axis and the physiological role of NMB in reproduction.


Assuntos
Sistema Hipotálamo-Hipofisário , Neurocinina B/análogos & derivados , Sistema Hipófise-Suprarrenal , Animais , Linhagem Celular , Hormônio Liberador de Gonadotropina/metabolismo , Gonadotropinas/sangue , Humanos , Hipotálamo/metabolismo , Hormônio Luteinizante/metabolismo , Masculino , Neurocinina B/fisiologia , Hipófise/metabolismo , Ratos , Ratos Wistar , Testosterona/sangue , Técnicas de Cultura de Tecidos
14.
Diabet Med ; 30(12): 1495-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23796160

RESUMO

AIM: Increased body iron is associated with insulin resistance. Hepcidin is the key hormone that negatively regulates iron homeostasis. We hypothesized that individuals with insulin resistance have inadequate hepcidin levels for their iron load. METHODS: Serum concentrations of the active form of hepcidin (hepcidin-25) and hepcidin:ferritin ratio were evaluated in participants with Type 2 diabetes (n = 33, control subjects matched for age, gender and BMI, n = 33) and participants with polycystic ovary syndrome (n = 27, control subjects matched for age and BMI, n = 16). To investigate whether any changes observed were associated with insulin resistance rather than insulin deficiency or hyperglycaemia per se, the same measurements were made in participants with Type 1 diabetes (n = 28, control subjects matched for age, gender and BMI, n = 30). Finally, the relationship between homeostasis model assessment of insulin resistance and serum hepcidin:ferritin ratio was explored in overweight or obese participants without diabetes (n = 16). RESULTS: Participants with Type 2 diabetes had significantly lower hepcidin and hepcidin:ferritin ratio than control subjects (P < 0.05 and P < 0.01, respectively). Participants with polycystic ovary syndrome had a significantly lower hepcidin:ferritin ratio than control subjects (P < 0.05). There was no significant difference in hepcidin or hepcidin:ferritin ratio between participants with Type 1 diabetes and control subjects (P = 0.88 and P = 0.94). Serum hepcidin:ferritin ratio inversely correlated with homeostasis model assessment of insulin resistance (r = -0.59, P < 0.05). CONCLUSION: Insulin resistance, but not insulin deficiency or hyperglycaemia per se, is associated with inadequate hepcidin levels. Reduced hepcidin concentrations may cause increased body iron stores in insulin-resistant states.


Assuntos
Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 2/sangue , Ferritinas/sangue , Hepcidinas/sangue , Resistência à Insulina , Síndrome do Ovário Policístico/sangue , Adulto , Glicemia/metabolismo , Feminino , Ferritinas/deficiência , Hepcidinas/deficiência , Homeostase , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Pessoa de Meia-Idade
15.
Br J Pharmacol ; 170(7): 1333-48, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23121386

RESUMO

UNLABELLED: Obesity is a major worldwide public health issue. The physiological systems that regulate body weight are thus of great interest as targets for anti-obesity agents. Peptidergic systems are critical to the regulation of energy homeostasis by key regions in the hypothalamus and brainstem. A number of neuropeptide systems have therefore been investigated as potential treatments for obesity. Blocking orexigenic peptide signals such as neuropeptide Y, melanin-concentrating hormone, orexins, relaxin-3 and galanin-like peptide or stimulating anorectic signalling pathways used by peptides such as the melanocortins, ciliary neurotrophic factor and brain-derived neurotrophic factor, are approaches that have shown some promise, but which have also highlighted possible concerns. Manipulation of central peptidergic systems poses a number of therapeutic problems, including brain access and side effects. Given that the homeostatic defence of body weight may limit the effectiveness of any single-target therapy developed, a combination therapy approach may offer the best hope for the effective prevention and treatment of obesity. LINKED ARTICLES: This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Encéfalo/efeitos dos fármacos , Neuropeptídeos/uso terapêutico , Obesidade/tratamento farmacológico , Animais , Regulação do Apetite/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Quimioterapia Combinada , Comportamento Alimentar/efeitos dos fármacos , Humanos , Neuropeptídeos/metabolismo , Obesidade/metabolismo , Obesidade/fisiopatologia , Transdução de Sinais/efeitos dos fármacos
16.
Br J Pharmacol ; 161(3): 601-13, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20880399

RESUMO

BACKGROUND AND PURPOSE: Alarin is a recently discovered member of the galanin peptide family encoded by a splice variant of galanin-like peptide (GALP) mRNA. Galanin and GALP regulate energy homeostasis and reproduction. We therefore investigated the effects of alarin on food intake and gonadotrophin release. EXPERIMENTAL APPROACH: Alarin was administered into the third cerebral ventricle (i.c.v.) of rats, and food intake or circulating hormone levels were measured. The effect of alarin on the hypothalamo-pituitary-gonadal axis was investigated in vitro using hypothalamic and anterior pituitary explants, and immortalized cell lines. Receptor binding assays were used to determine whether alarin binds to galanin receptors. KEY RESULTS: The i.c.v. administration of alarin (30 nmol) to ad libitum fed male rats significantly increased acute food intake to 500%, and plasma luteinizing hormone (LH) levels to 170% of responses to saline. In vitro, 100 nM alarin stimulated neuropeptide Y (NPY) and gonadotrophin-releasing hormone (GnRH) release from hypothalamic explants from male rats, and 1000 nM alarin increased GnRH release from GT1-7 cells. In vivo, pretreatment with the GnRH receptor antagonist cetrorelix prevented the increase in plasma LH levels observed following i.c.v. alarin administration. Receptor binding studies confirmed alarin did not bind to any known galanin receptor, or compete with radiolabelled galanin for hypothalamic binding sites. CONCLUSIONS AND IMPLICATIONS: These results suggest alarin is a novel orexigenic peptide, and that it increases circulating LH levels via hypothalamic GnRH. Further work is required to identify the receptor(s) mediating the biological effects of alarin.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Peptídeo Semelhante a Galanina/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Gonadotropinas/sangue , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Linhagem Celular , Peptídeo Semelhante a Galanina/administração & dosagem , Peptídeo Semelhante a Galanina/antagonistas & inibidores , Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Liberador de Gonadotropina/farmacologia , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Injeções Intraventriculares , Hormônio Luteinizante/sangue , Masculino , Neuropeptídeo Y/metabolismo , Ensaio Radioligante , Ratos , Ratos Wistar , Receptores de Galanina/metabolismo , Testosterona/sangue
17.
Diabetes Obes Metab ; 12(12): 1090-6, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20977581

RESUMO

AIM: Relaxin is a polypeptide hormone involved in pregnancy and lactation. It is mainly secreted by the corpus luteum and placenta, but is expressed in a number of other tissues, including heart and brain. Within the brain, relaxin is expressed in the olfactory and limbic systems, the cortex and the hypothalamic arcuate nucleus (ARC). Its cognate receptor, relaxin family peptide receptor 1 (RXFP1), is also widely expressed in the brain, including the hypothalamic ARC and paraventricular nucleus (PVN), areas important in appetite regulation. The aim of this study was to investigate whether relaxin influences food intake through central hypothalamic circuits. METHODS: The human form of relaxin, human relaxin-2 (H2) was administered centrally and peripherally to male Wistar rats and food intake measured. Behaviour was also assessed. RESULTS: Intracerebroventricular (ICV) administration of H2 significantly decreased 1-h food intake in the early dark phase [2.95 ± 0.45 g (saline) vs. 0.95 ± 0.18 g (180 pmol H2), p < 0.001]. ICV administration of H2 decreased feeding behaviour and increased grooming and headdown behaviour. Intraparaventricular injections of H2 significantly decreased 1-h food intake in the early dark phase [3.13 ± 0.35 g (saline) vs. 1.35 ± 0.33 g (18 pmol H2), p < 0.01, 1.61 ± 0.31 g (180 pmol H2), p < 0.05 and 1.23 ± 0.32 g (540 pmol H2), p < 0.001]. Intraperitoneal (IP) administration of H2 significantly decreased 1-h food intake in the early dark phase [4.63 ± 0.46 g (vehicle) vs. 3.08 ± 0.15 g (66 nmol H2), p < 0.01, 3.00 ± 0.17 g (200 nmol H2), p < 0.01 and 2.26 ± 0.36 g (660 nmol H2), p < 0.001]. CONCLUSIONS: Central and peripheral administration of H2 reduces the food intake in rats. This effect may be mediated via the PVN and/or other brain regions.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Relaxina/administração & dosagem , Animais , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/fisiologia , Injeções Intraventriculares , Masculino , Ratos , Ratos Wistar , Relaxina/farmacologia
18.
Clin Pharmacol Ther ; 88(6): 840-7, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20980998

RESUMO

Kisspeptin is a novel therapeutic target for infertility. A single kisspeptin-54 (KP-54) injection acutely stimulates the release of reproductive hormones in women with hypothalamic amenorrhea (HA), a commonly occurring condition characterized by absence of menstruation; however, twice-daily administration of KP-54 results in tachyphylaxis. We determined the time course of desensitization to twice-daily KP-54 injections, compared the effects of twice-daily and twice-weekly administration regimens of KP-54, and studied the effects of long-term twice-weekly administration of KP-54 on the release of reproductive hormones in women with HA. When KP-54 was administered twice daily, responsiveness to luteinizing hormone (LH) diminished gradually, whereas responsiveness to follicle-stimulating hormone (FSH) was nearly abolished by day 2. Twice-weekly KP-54 administration resulted in only partial desensitization, in contrast to the complete tolerance achieved with twice-daily administration. Women with HA who were treated with twice-weekly KP-54 injections had significantly elevated levels of reproductive hormones after 8 weeks as compared with treatment with saline. No adverse effects were observed. This study provides novel pharmacological data on the effects of KP-54 on the release of reproductive hormones in women with HA.


Assuntos
Amenorreia/sangue , Estradiol/sangue , Hormônio Foliculoestimulante/sangue , Hipotálamo/metabolismo , Hormônio Luteinizante/sangue , Proteínas Supressoras de Tumor/administração & dosagem , Adolescente , Adulto , Amenorreia/tratamento farmacológico , Método Duplo-Cego , Esquema de Medicação , Feminino , Hormônio Foliculoestimulante/metabolismo , Humanos , Kisspeptinas , Hormônio Luteinizante/metabolismo , Projetos Piloto , Reprodução/efeitos dos fármacos , Reprodução/fisiologia , Adulto Jovem
19.
Int J Obes (Lond) ; 34(12): 1715-25, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20531351

RESUMO

OBJECTIVE: To determine the efficacy of a long-acting oxyntomodulin (OXM) analogue, OXM6421, in inhibiting food intake and decreasing body weight in lean and diet-induced obese (DIO) rodents. RESEARCH DESIGN AND METHODS: The glucagon-like peptide-1 (GLP-1) receptor binding affinity and efficacy, sensitivity to enzymatic degradation in vitro and persistence in the circulation after peripheral administration were investigated for OXM6421 and compared with native OXM. The chronic effect of OXM6421 on food intake, body weight and energy expenditure was examined in lean rats, and its anti-obesity potential was evaluated in DIO mice. RESULTS: OXM6421 showed enhanced GLP-1 receptor binding affinity and cyclic adenosine monophosphate (cAMP) stimulation, and higher resistance to enzymatic degradation by dipeptidyl peptidase IV (DPP-IV) and neutral endopeptidase (NEP) compared with native OXM. OXM6421 persisted longer in the circulation than OXM after peripheral administration. Acute administration of OXM6421 potently inhibited food intake in lean rodents, with cumulative effects lasting up to 24 h. In lean rats, daily subcutaneous (s.c.) administration of OXM6421 caused greater weight loss than the pair-fed animals, and a higher rate of oxygen consumption than both the pair-fed and the saline controls. In DIO mice, continuous s.c. infusion of OXM6421 resulted in a significant weight loss, accompanied by an improvement in glucose homeostasis and an increase in circulating adiponectin levels. Once-daily s.c. administration of OXM6421 for 21 days caused sustained weight loss in DIO mice. CONCLUSION: OXM6421 induces negative energy balance in both lean and obese rodents, suggesting that long-acting OXM analogues may represent a potential therapy for obesity.


Assuntos
Fármacos Antiobesidade/farmacologia , Peso Corporal/efeitos dos fármacos , Hormônios Gastrointestinais/farmacologia , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Hormônios Peptídicos/farmacologia , Receptores de Glucagon/efeitos dos fármacos , Animais , Peso Corporal/fisiologia , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1 , Injeções Subcutâneas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar , Redução de Peso/efeitos dos fármacos , Redução de Peso/fisiologia
20.
J Neuroendocrinol ; 22(3): 181-7, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20041982

RESUMO

Growing evidence suggests the tachykinin neurokinin B (NKB) may modulate gonadotrophin secretion and play a role in sex-steroid feedback within the reproductive axis. NKB signalling has recently been identified as being necessary for normal human reproductive function, although the precise mechanisms underpinning this role remain to be established. We have used rodents to explore further the role of NKB within the reproductive axis. In particular, we have studied its interactions with kisspeptin, a neuropeptide essential for reproductive function in rodent and human with close anatomical links to NKB within the hypothalamus. Intraperitoneal administration of NKB (50 nmol) to male mice had no effect on circulating luteinsing hormone (LH) levels and, although i.p. kisspeptin (15 nmol) increased LH five-fold, co-administration of NKB and kisspeptin was indistinguishable from kisspeptin alone. Intracerebroventricular administration of NKB (10 nmol) to male mice also had no effect on LH levels, with 1 nmol kisspeptin i.c.v. significantly increasing LH compared to control (0.37 +/- 0.18 versus 5.11 +/- 0.28 ng/ml, respectively). Interestingly, i.c.v. co-administration of NKB and kisspeptin caused a significant increase in LH concentrations compared to kisspeptin alone (8.96 +/- 1.82 versus 5.11 +/- 0.28 ng/ml respectively). We used hypothalamic explants from rats to assess the effect of NKB on gonadotrpohin-releasing hormone (GnRH) secretion ex vivo. Doses of NKB up to 1000 nm failed to stimulate GnRH secretion, whereas 100 nm kisspeptin robustly increased GnRH secretion. Of note, co-administration of NKB with kisspeptin abrogated the effect of kisspeptin, producing no GnRH release above basal state. Finally, we analysed the expression of Tac2/Tacr3 (genes encoding NKB and NK3R, respectively) within the arcuate nucleus in different nutritional states. After a 48-h fast, the expression of both Tac2 and Tacr3 showed a significant increase, in contrast to levels of Kiss1 and Kiss1r mRNA, which remained unchanged. In male rodent models, NKB and kisspeptin have different effects upon gonadotrophin release and appear to interact in a complex manner.


Assuntos
Hormônio Luteinizante/metabolismo , Neurocinina B/farmacologia , Proteínas/farmacologia , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Jejum/metabolismo , Hormônio Liberador de Gonadotropina/sangue , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas , Hormônio Luteinizante/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurocinina B/administração & dosagem , Precursores de Proteínas/biossíntese , Proteínas/administração & dosagem , Ratos , Ratos Wistar , Receptores de Taquicininas/biossíntese , Taquicininas/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA