Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Plants (Basel) ; 13(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38794368

RESUMO

The introduction of quinoa into new growing regions and environments is of interest to farmers, consumers, and stakeholders around the world. Many plant breeding programs have already started to adapt quinoa to the environmental and agronomic conditions of their local fields. Formal quinoa breeding efforts in Washington State started in 2010, led by Professor Kevin Murphy out of Washington State University. Preharvest sprouting appeared as the primary obstacle to increased production in the coastal regions of the Pacific Northwest. Preharvest sprouting (PHS) is the undesirable sprouting of seeds that occurs before harvest, is triggered by rain or humid conditions, and is responsible for yield losses and lower nutrition in cereal grains. PHS has been extensively studied in wheat, barley, and rice, but there are limited reports for quinoa, partly because it has only recently emerged as a problem. This study aimed to better understand PHS in quinoa by adapting a PHS screening method commonly used in cereals. This involved carrying out panicle-wetting tests and developing a scoring scale specific for panicles to quantify sprouting. Assessment of the trait was performed in a diversity panel (N = 336), and the resulting phenotypes were used to create PHS tolerance rankings and undertake a GWAS analysis (n = 279). Our findings indicate that PHS occurred at varying degrees across a subset of the quinoa germplasm tested and that it is possible to access PHS tolerance from natural sources. Ultimately, these genotypes can be used as parental lines in future breeding programs aiming to incorporate tolerance to PHS.

2.
Front Plant Sci ; 14: 1161165, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929178

RESUMO

Introduction: Quinoa is a high-value, nutritious crop that performs well in variable environments, marginal soils, and in diverse crop rotations. Quinoa's many attributes make it an ideal crop for supporting human health in global communities and economies. To date, quinoa research has largely focused on traits in adult plants important for enhancing plant phenotypic plasticity, abiotic stress, disease resistance, and yield. Fewer studies have evaluated quinoa seed dormancy and suggest that most modern quinoa varieties have weak or no seed dormancy, and a narrow window of seed viability post-harvest. In other crops, diminished seed dormancy is a major risk factor for preharvest sprouting (PHS; germination on the panicle due to rain prior to harvest) and may also pose a similar risk for quinoa. Methods: This study (1) developed a dormancy screening assay to characterize seed dormancy strength in a large collection of quinoa varieties, (2) investigated if morphological variables including seed coat color, seed coat thickness, seed shape including eccentricity which evaluates the roundness or flatness of a seed, and other agronomic traits like crude protein content and seed moisture, contribute to quinoa seed dormancy, and (3) evaluated the use of a phenetic modeling approach to explore relationships between seed morphology and seed dormancy. Results: Dormancy screening indicated seed dormancy ranges in quinoa varieties from none to strong dormancy. Further, phenetic modeling approaches indicate that seed coat thickness and eccentricity are important morphological variables that impact quinoa seed dormancy strength. Conclusions: While dormancy screening and phenetic modeling approaches do not provide a direct solution to preventing PHS in quinoa, they do provide new tools for identifying dormant varieties as well as morphological variables contributing to seed dormancy.

3.
Front Plant Sci ; 14: 1101547, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875583

RESUMO

Quinoa (Chenopodium quinoa Willd.), a pseudocereal with high protein quality originating from the Andean region of South America, has broad genetic variation and adaptability to diverse agroecological conditions, contributing to the potential to serve as a global keystone protein crop in a changing climate. However, the germplasm resources currently available to facilitate quinoa expansion worldwide are restricted to a small portion of quinoa's total genetic diversity, in part because of day-length sensitivity and issues related to seed sovereignty. This study aimed to characterize phenotypic relationships and variation within a quinoa world core collection. The 360 accessions were planted in a randomized complete block design with four replicates in each of two greenhouses in Pullman, WA during the summer of 2018. Phenological stages, plant height, and inflorescence characteristics were recorded. Seed yield, composition, thousand seed weight, nutritional composition, shape, size, and color were measured using a high-throughput phenotyping pipeline. Considerable variation existed among the germplasm. Crude protein content ranged from 11.24% to 17.81% (fixed at 14% moisture). We found that protein content was negatively correlated with yield and positively correlated with total amino acid content and days to harvest. Mean essential amino acids values met adult daily requirements but not leucine and lysine infant requirements. Yield was positively correlated with thousand seed weight and seed area, and negatively correlated with ash content and days to harvest. The accessions clustered into four groups, with one-group representing useful accessions for long-day breeding programs. The results of this study establish a practical resource for plant breeders to leverage as they strategically develop germplasm in support of the global expansion of quinoa.

4.
J Food Sci ; 87(12): 5225-5239, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36331266

RESUMO

Ten advanced breeding lines of quinoa were evaluated for their physicochemical and functional characteristics. These novel breeding lines were used in two model foods, including cookies and cooked grains, to understand the influence of their characteristics on the product quality. The cookies were baked using whole quinoa flour, and the quality attributes of texture, physical dimensions, and color were measured. The whole quinoa grains were cooked with water at a 1:4 (w/w) grain-to-water ratio, and quality attributes including water uptake (WU-G), bulk density (BD-G), and cooking loss (CL-G) were measured. Significant differences in the quality of both products as an impact of the breeding lines were observed. In baked cookies, the WAQ2 variety produced cookies with the lowest diameter, whereas cookies prepared with WAQ1 were significantly softer than other varieties. In terms of cooked quinoa, WAQ8 exhibited the highest WU-G while WAQ1 showed the highest CL-G. Correlations were observed between flour characteristics and final product quality. Cookie height was negatively correlated with protein content, whereas the water solubility index (WSI) of flours had a positive effect on the cookie hardness. The cooking characteristics of quinoa grains were found to be correlated with the thermal properties of whole quinoa flour. The results of this study will help determine the advanced breeding lines for release as commercial varieties and will also provide food processors with information to find suitable quinoa varieties for different food applications. PRACTICAL APPLICATION: New quinoa breeding lines have been developed to be grown in the climate conditions of Washington State. These varieties were characterized to find correlations with food quality for cookies and cooked grains. The results from this study will help farmers navigate among the quinoa varieties and help commercial food producers use the optimal quinoa variety for their specific food products.


Assuntos
Chenopodium quinoa , Chenopodium quinoa/química , Melhoramento Vegetal , Culinária/métodos , Farinha/análise , Água
5.
JBI Evid Synth ; 20(8): 2109-2116, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35971208

RESUMO

OBJECTIVE: The objective of this review is to develop a definition of biofortification through the synthesis of food biofortification publications and to document the breadth of the research on this topic. INTRODUCTION: Biofortification of a food source is a human health intervention. Due to the varying definitions of this concept, biofortification can be difficult to describe. Originally, biofortification was defined as the use of plant breeding methods to produce staple foods dense in minerals and vitamins. Research using the term focused on mineral, vitamin, and protein improvement of staple foods. However, the field has expanded to include non-staple foods as well as different methodological approaches to biofortification (eg, transgenic, molecular breeding). Researchers require a broad overview of the evidence and consensus on a definition to ensure effective communication within this scientific community. INCLUSION CRITERIA: Inclusion criteria will be broad to ensure that existing definitions of biofortification are captured across the different areas of study in this field. The review will consider research published in English. Inclusion will not be limited by participant type, date of publication, or context. The concept will be strictly biofortification. METHODS: A broad search strategy will be utilized for AGRICOLA, AGRIS, Web of Science, PubAg, CINAHL, PubMed, Cochrane Library, Epistemonikos, JBI Evidence Synthesis, Google Scholar, and Washington State University Libraries' integrated catalog. A limited search for gray literature will be conducted. The data extracted will include study and author characteristics. Tables and figures will demonstrate the breadth of the evidence.


Assuntos
Biofortificação , Vitamina A , Humanos , Minerais , Literatura de Revisão como Assunto , Vitaminas , Washington
6.
Sci Data ; 9(1): 323, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725573

RESUMO

Quinoa (Chenopodium quinoa Willd.) is an herbaceous annual crop of the amaranth family (Amaranthaceae). It is increasingly cultivated for its nutritious grains, which are rich in protein and essential amino acids, lipids, and minerals. Quinoa exhibits a high tolerance towards various abiotic stresses including drought and salinity, which supports its agricultural cultivation under climate change conditions. The use of quinoa grains is compromised by anti-nutritional saponins, a terpenoid class of secondary metabolites deposited in the seed coat; their removal before consumption requires extensive washing, an economically and environmentally unfavorable process; or their accumulation can be reduced through breeding. In this study, we analyzed the seed metabolomes, including amino acids, fatty acids, and saponins, from 471 quinoa cultivars, including two related species, by liquid chromatography - mass spectrometry. Additionally, we determined a large number of agronomic traits including biomass, flowering time, and seed yield. The results revealed considerable diversity between genotypes and provide a knowledge base for future breeding or genome editing of quinoa.


Assuntos
Chenopodium quinoa , Metaboloma , Sementes , Chenopodium quinoa/química , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Secas , Melhoramento Vegetal , Saponinas , Sementes/química , Sementes/metabolismo
7.
J Food Sci ; 86(8): 3628-3644, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34190346

RESUMO

American craft brewers are targeting barley malt as a novel source of flavor and as a means of differentiation. However, fundamental tools have only recently emerged to aid barley breeders in supporting this effort, such as the hot steep malt sensory method, a wort preparation method recently approved by the American Society of Brewing Chemists for evaluation of extractable malt flavor. The primary objective of this study was to determine if insights into beer liking and sensory attributes can be gained through hot steep malt sensory using an untrained panel of craft beer consumers (n = 95). We evaluated consumer acceptance of hot steep and beer samples of different barley genotypes using a 9-point hedonic scale, check-all-that-apply (CATA), and open comment during separate sensory panels. Beers brewed with Washington State University breeding lines (n = 4), selected for all-malt craft brewing, generally had higher consumer acceptance than the industry-standard control variety (CDC Copeland). Genotype had a significant influence on the consumer acceptance of beer aroma, appearance, taste/flavor, sweetness, and overall liking but only on hot steep appearance. Significant differences between genotypes were found for 18% (fruity and other) and 46% (chemical, citrus, earthy, fruity, stale, and sweet aromatic) of CATA attributes for the hot steep and beer panels, respectively. Hot steep and beer liking and sensory attributes had low correlation coefficients. For example, beer overall liking was negatively correlated with chemical (r = -0.338, p < 0.0001) and positively correlated with fruity (r = 0.265, p < 0.0001). This study demonstrates that untrained craft beer consumers can better differentiate among genotypes using beers than hot steep samples. PRACTICAL APPLICATION: In general, Washington State University barley breeding lines had higher consumer acceptance than the control variety, CDC Copeland. Each genotype had a distinctive beer flavor profile, such as 12WA_120.14 (fruity and sweet aromatic), which had the highest consumer acceptance ratings, and 10WA_107.43 (citrus), which has been released as the variety "Palmer." The results illustrate that the use of different barley genotypes presents varied sensory properties in the final beer and that particular malt and beer sensory attributes may influence consumer acceptance.


Assuntos
Cerveja , Hordeum , Cerveja/análise , Comportamento do Consumidor , Aromatizantes/análise , Hordeum/genética , Humanos , Melhoramento Vegetal , Paladar
8.
Environ Entomol ; 50(4): 852-859, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-33960388

RESUMO

Crop diversification often promotes farm sustainability. However, proper management of newly introduced crops is difficult when pests are unknown. Characterizing herbivore dynamics on new crops, and how they respond to agronomic factors, is crucial for integrated pest management. Here we explored factors affecting Lygus spp. (Hemiptera: Miridae) herbivores in quinoa crops of Washington State. Quinoa is a newly introduced crop for North America that has multiple varieties and a range of agronomic practices used for cultivation. Through arthropod surveys and discussions with growers, we determined that Lygus spp. was the most abundant insect herbivore and likely contributed to low quinoa yields in previous seasons. We assessed how different varieties (Pison and QQ74), irrigation regimes (present and not), and planting methods (direct-seeded and transplanted) affected Lygus population dynamics. Lygus phenology was correlated with timing of quinoa seed-set in July and August, corresponding to a period when quinoa is most susceptible to Lygus. Both irrigation and planting manipulations had significant effects on Lygus abundance. Irrigation reduced Lygus abundance compared with nonirrigated plots in 2018. Planting method had a significant effect on Lygus populations in both 2017 and 2018, but effects differed among years. Variety had a significant effect on Lygus abundance, but only in nonirrigated plots. Overall, our study shows that Lygus is a common insect herbivore in quinoa, and careful selection of variety, planting method, and irrigation regime may be key components of effective control in seasons where Lygus abundance is high.


Assuntos
Chenopodium quinoa , Hemípteros , Heterópteros , Animais , Herbivoria , Insetos , Dinâmica Populacional
9.
Plants (Basel) ; 10(3)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33670959

RESUMO

Quinoa (Chenopodium quinoa Willd.) is a culturally significant staple food source that has been grown for thousands of years in South America. Due to its natural drought and salinity tolerance, quinoa has emerged as an agronomically important crop for production in marginal soils, in highly variable climates, and as part of diverse crop rotations. Primary areas of quinoa research have focused on improving resistance to abiotic stresses and disease, improving yields, and increasing nutrition. However, an evolving issue impacting quinoa seed end-use quality is preharvest sprouting (PHS), which is when seeds with little to no dormancy experience a rain event prior to harvest and sprout on the panicle. Far less is understood about the mechanisms that regulate quinoa seed dormancy and seed viability. This review will cover topics including seed dormancy, orthodox and unorthodox dormancy programs, desiccation sensitivity, environmental and hormonal mechanisms that regulate seed dormancy, and breeding and non-breeding strategies for enhancing resistance to PHS in quinoa.

10.
Microb Ecol ; 82(1): 135-144, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33580815

RESUMO

Quinoa (Chenopodium quinoa Willd.) is becoming an increasingly important food crop. Understanding the microbiome of quinoa and its relationships with soil microorganisms may improve crop yield potential or nutrient use efficiency. Whether quinoa is a host or non-host of a key soil symbiont, arbuscular mycorrhizal fungi (AMF), is suddenly up for debate with recent field studies reporting root colonization and presence of arbuscules. This research seeks to add evidence to the mycorrhizal classification of quinoa as we investigated additional conditions not previously explored in quinoa that may affect root colonization. A greenhouse study used six AMF species, two AMF commercial inoculant products, and a diverse set of 10 quinoa genotypes. Results showed 0 to 3% quinoa root colonization by AMF when grown under greenhouse conditions. Across quinoa genotypes, AMF inoculant affected shoot dry weight (p = 0.066) and height (p = 0.031). Mykos Gold produced greater dry biomass than Claroideoglomus eutunicatum (27% increase), Rhizophagus clarus (26% increase), and within genotype CQ119, the control (21% increase). No treatment increased plant height compared to control, but Funneliformis mosseae increased height compared to C. eutunicatum (25% increase) and Rhizophagus intraradices (25% increase). Although quinoa plants were minimally colonized by AMF, plant growth responses fell along the mutualism-parasitism continuum. Individual AMF treatments increased leaf greenness in quinoa genotypes 49ALC and QQ87, while R. clarus decreased greenness in CQ119 compared to the control. Our research findings support the recommendation to classify quinoa as non-mycorrhizal when no companion plant is present and inconsistently mycorrhizal when conditional colonization occurs.


Assuntos
Chenopodium quinoa , Micorrizas , Bioensaio , Fungos , Micorrizas/genética , Raízes de Plantas
11.
Front Nutr ; 7: 605674, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240922

RESUMO

[This corrects the article DOI: 10.3389/fnut.2020.00126.].

12.
Front Nutr ; 7: 126, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903386

RESUMO

Quinoa (Chenopodium quinoa Willd.) is a pseudocereal celebrated for its excellent nutritional quality and potential to improve global food security, especially in marginal environments. However, minimal information is available on how genotype influences seed composition, and thus, nutritional quality. This study aimed to provide a baseline for nutritional quality of Washington grown quinoa and test the hypothesis that these samples contain adequate amounts of essential amino acids to meet daily requirements set by the World Health Organization (WHO). One hundred samples, representing commercial varieties and advanced breeding lines adapted to Washington State, were analyzed for content of 23 amino acids, as well as crude protein, ash, moisture, and crude fat. Mean essential amino acid values for Washington grown quinoa met the daily requirements for all age groups for all essential amino acids, except for the amount of leucine required by infants. We found that only nine genotypes met the leucine requirements for all age groups. A total of 52 and 94 samples met the lysine and tryptophan requirements for all age groups, respectively. Mean values for isoleucine, leucine, lysine, tryptophan, valine, and the sulfur and aromatic amino acids are higher for Washington grown samples than those reported previously reported in the literature. Our results show that not all Washington grown quinoa samples meet daily requirements of essential amino acids, and we identify limiting amino acids for the germplasm and environments investigated. This study provides the first report of leucine as a limiting amino acid in quinoa. Additional research is needed to better understand variation in quinoa nutritional composition, identify varieties that meet daily requirements, and explore how genotype, environment, and management interactions influence nutritional quality.

13.
Plants (Basel) ; 9(1)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936466

RESUMO

Quinoa (Chenopodium quinoa Willd.) is a highly nutritious crop that is resilient to a wide range of abiotic stresses; however, sensitivity to high temperatures is regarded as an impediment to adoption in regions prone to heat waves. Heat stress is usually associated with a decrease in crop reproductive capacity (e.g., pollen viability), yet little is known about how leaf physiological performance of quinoa is affected by high temperatures. Several trials were conducted to understand the effect of high temperatures, without confounding stressors such as drought, on ten selected quinoa genotypes considered to encompass heat sensitive and heat tolerant plant material. Plants were grown under favorable temperatures and exposed to two temperature treatments over four consecutive days. The heat treatment simulated heat waves with maximum and minimum temperatures higher during the day and night, while the control treatment was maintained under favorable temperatures (maximum and minimum temperatures for 'Heat': 45/30 °C and 'Control': 20/14 °C). Leaf gas exchange (day), chlorophyll fluorescence (predawn and day) and dark respiration (night) were measured. Results show that most quinoa genotypes under the heat treatment increased their photosynthetic rates and stomatal conductance, resulting in a lower intrinsic water use efficiency. This was partly corroborated by an increase in the maximum quantum yield of photosystem II (Fv/Fm). Dark respiration decreased under the heat treatment in most genotypes, and temperature treatment did not affect aboveground biomass by harvest (shoot and seeds). These results suggest that heat stress alone favors increases in leaf carbon assimilation capacity although the tradeoff is higher plant water demand, which may lead to plant water stress and lower yields under non-irrigated field conditions.

15.
PLoS One ; 14(3): e0212852, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30893328

RESUMO

The U.S. art museum sector is grappling with diversity. While previous work has investigated the demographic diversity of museum staffs and visitors, the diversity of artists in their collections has remained unreported. We conduct the first large-scale study of artist diversity in museums. By scraping the public online catalogs of 18 major U.S. museums, deploying a sample of 10,000 artist records comprising over 9,000 unique artists to crowdsourcing, and analyzing 45,000 responses, we infer artist genders, ethnicities, geographic origins, and birth decades. Our results are threefold. First, we provide estimates of gender and ethnic diversity at each museum, and overall, we find that 85% of artists are white and 87% are men. Second, we identify museums that are outliers, having significantly higher or lower representation of certain demographic groups than the rest of the pool. Third, we find that the relationship between museum collection mission and artist diversity is weak, suggesting that a museum wishing to increase diversity might do so without changing its emphases on specific time periods and regions. Our methodology can be used to broadly and efficiently assess diversity in other fields.


Assuntos
Arte , Diversidade Cultural , Museus , Humanos , Estados Unidos
16.
Plants (Basel) ; 7(4)2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30501077

RESUMO

Quinoa (Chenopodium quinoa Willd.) is a genetically diverse Andean crop that has earned special attention worldwide due to its nutritional and health benefits and its ability to adapt to contrasting environments, including nutrient-poor and saline soils and drought stressed marginal agroecosystems. Drought and salinity are the abiotic stresses most studied in quinoa; however, studies of other important stress factors, such as heat, cold, heavy metals, and UV-B light irradiance, are severely limited. In the last few decades, the incidence of abiotic stress has been accentuated by the increase in unpredictable weather patterns. Furthermore, stresses habitually occur as combinations of two or more. The goals of this review are to: (1) provide an in-depth description of the existing knowledge of quinoa's tolerance to different abiotic stressors; (2) summarize quinoa's physiological responses to these stressors; and (3) describe novel advances in molecular tools that can aid our understanding of the mechanisms underlying quinoa's abiotic stress tolerance.

17.
J Dairy Sci ; 101(12): 10743-10749, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30292547

RESUMO

Acid whey (AW) is the liquid co-product arising from acid-induced precipitation of casein from skim milk. Further processing of AW is often challenging due to its high mineral content, which can promote aggregation of whey proteins, which contributes to high viscosity of the liquid concentrate during subsequent lactose crystallization and drying steps. This study focuses on mineral precipitation, protein aggregation, and lactose crystallization in liquid AW concentrates (∼55% total solids), and on the microstructure of the final powders from 2 independent industrial-scale trials. These AW concentrates were observed to solidify either during processing or during storage (24 h) of pre-crystallized concentrate. The more rapid solidification in the former was associated with a greater extent of lactose crystallization and a higher ash-to-protein ratio in that concentrate. Confocal laser scanning microscopy analysis indicated the presence of a loose network of protein aggregates (≤10 µm) and lactose crystals (100-300 µm) distributed throughout the solidified AW concentrate. Mineral-based precipitate was also evident, using scanning electron microscopy, at the surface of AW powder particles, indicating the formation of insoluble calcium phosphate during processing. These results provide new information on the composition- and process-dependent physicochemical changes that are useful in designing and optimizing processes for AW.


Assuntos
Caseínas/química , Leite/química , Soro do Leite/química , Animais , Fenômenos Químicos , Precipitação Química , Cristalização , Dessecação , Alimentos em Conserva , Lactose/química , Microscopia Eletrônica de Varredura , Proteínas do Leite/análise , Proteínas do Leite/química , Pós/química , Proteínas do Soro do Leite/química
18.
J Food Sci ; 82(10): 2387-2395, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28869289

RESUMO

Starch characteristics significantly influence the functionality and end-use quality of cereals and pseudo-cereals. This study examined the composition and properties of starch from 11 pure varieties and 2 commercial samples of quinoa in relationship to the texture of cooked quinoa. Nearly all starch properties and characteristics differed among these samples. Results showed that total starch content of seeds ranged from 53.2 to 75.1 g/100 g apparent amylose content ranged from 2.7% to 16.9%; total amylose ranged from 4.7% to 17.3%; and the degree of amylose-lipid complex ranged from 3.4% to 43.3%. Amylose leaching ranged from 31 mg/100 g starch in "Japanese Strain" to 862 mg/100 g starch in "49ALC." "Japanese Strain" starch also exhibited the highest water solubility (4.5%) and the lowest swelling power (17). α-Amylase activity in "1ESP," "Col.#6197," "Japanese Strain," "QQ63," "Yellow Commercial," and "Red Commercial" (0.03 to 0.09 CU) were significantly lower than the levels of the other quinoa samples (0.20 to 1.16 CU). Additionally, gel texture, thermal properties, and pasting properties of quinoa starches were investigated. Lastly, correlation analysis showed that the quinoa samples with higher amylose content tended to yield harder, stickier, more cohesive, more gummy, and more chewy texture after cooking. A higher degree of amylose-lipid complex and amylose leaching were associated with softer and less chewy cooked quinoa TPA texture. Higher starch enthalpy correlated with firmer, more adhesive, more cohesive, and chewier texture. In sum, starch plays a significant role in the texture of cooked quinoa. PRACTICAL APPLICATION: The research determined starch characteristics among a diverse set of pure quinoa varieties and commercial samples, and identified the relationships between starch properties and cooked quinoa texture. The results can help breeders and food manufacturers to understand better the relationships among quinoa starch characteristics, cooked quinoa texture, and the best use of different cultivars.


Assuntos
Chenopodium quinoa/química , Amido/química , Amilose/química , Chenopodium quinoa/enzimologia , Culinária , Dureza , Temperatura Alta , Sementes/química , Solubilidade , Termodinâmica , alfa-Amilases/química
19.
Front Nutr ; 4: 37, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824917

RESUMO

US organic poultry producers are under pressure to find feed alternatives to corn and wheat. Hulless oats offer advantages such as wide geographic adaptation of the plant and high concentrations of protein and oil in the grain. They have shown considerable potential in experimental work as a feed grain for poultry, but more research is needed into their influence on the sensory and nutritional properties of eggs. In this study, hulless oats were substituted for corn or wheat at 200 g kg-1 in diets fed to Hy-Line Brown hens and eggs were sampled for sensory evaluation after 8 weeks. Discrimination tests of blended and baked egg samples found evidence of difference between eggs from oat-based diets and those from the oat-free control (p < 0.05 for eggs from an oat-corn diet, p < 0.01 for eggs from an oat-wheat diet). Acceptance tests of similar samples showed that eggs from the oat-wheat diet were significantly less liked than control eggs for their texture (p < 0.01) and response to cooking (p < 0.01), while eggs from the oat-corn diet were somewhat less liked. Yolk weight was greater (p < 0.05) in control eggs (34.1 g) than eggs from oat-corn (31.6 g) or oat-wheat (31.2 g) diets, leading to smaller yolk proportion in the oat-fed eggs. Fatty acid profile differences across treatments were not of nutritional significance, and no evidence was found that the feeding of hulless oats improved storage properties of eggs. In this study, modifying the carbohydrate source in layer diets was shown to change textural properties of cooked eggs in a way that was perceptible to untrained consumers, probably by reducing the yolk proportion. This finding was not commercially relevant owing to small effect size, and results overall add to existing evidence that hulless oats can be fed to poultry at a moderate proportion of the diet with no negative effect on consumer acceptability of eggs. Regardless of the small effect size, however, findings are interesting from the food chemistry perspective because they provide novel evidence of how the thermal properties of eggs can be altered by a change in hen dietary carbohydrate source.

20.
J Food Sci ; 82(4): 993-1005, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28267866

RESUMO

Quinoa is becoming increasingly popular, with an expanding number of commercially available varieties. To compare the sensory properties of these quinoa varieties, a common sensory lexicon needs to be developed. Thus, the objective of this study was to develop a lexicon of cooked quinoa and examine consumer acceptance of diverse varieties. A trained panel (n = 9) developed aroma, taste/flavor, texture, and color descriptors to describe the sensory properties of 21 quinoa varieties. In addition, texture of the cooked quinoa was determined using a texture analyzer. Results indicated that the developed lexicon could distinguish among these quinoa varieties, showing significant differences in aromas, taste/flavors, and texture attributes. Specifically, quinoa variety effects were observed for the aromas of caramel, nutty, buttery, grassy, earthy, and woody; taste/flavor of sweet, bitter, grain-like, nutty, earthy, and toasty; and firm, cohesive, pasty, adhesive, crunchy, chewy, astringent, and moist textures. Three varieties, "QQ74," "Linares," and "CO407D," exhibited an adhesive texture that has not been described in other commercialized quinoa. Subsequent consumer evaluation (n = 100) on 6 selected samples found that the "Commercial Red" sample was the most accepted overall whereas the least accepted was the field variety "QQ74." For all consumers, overall acceptance of quinoa was driven by higher intensities of grassy aroma, and firm and crunchy texture. Segmentation of the consumers into 4 groups was explored and showed that consumers varied in their acceptance of specific attributes, particularly texture. From the present study, the quinoa lexicon and key drivers of consumer acceptance can be utilized in the industry to evaluate quinoa varieties, product quality and processing procedures.


Assuntos
Chenopodium quinoa/química , Comportamento do Consumidor , Grão Comestível , Adulto , Comportamento de Escolha , Cor , Culinária , Feminino , Preferências Alimentares , Humanos , Masculino , Pessoa de Meia-Idade , Odorantes , Olfato , Paladar , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA