Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 8(19): 5489-5503, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32914796

RESUMO

The immunosuppressive tumor microenvironment enables cancer to resist immunotherapies. We have established that intratumoral administration of plant-derived Cowpea mosaic virus (CPMV) nanoparticles as an in situ vaccine overcomes the local immunosuppression and stimulates a potent anti-tumor response in several mouse cancer models and canine patients. CPMV does not infect mammalian cells but acts as a danger signal that leads to the recruitment and activation of innate and subsequently, adaptive immune cells. In the present study we addressed whether other icosahedral viruses or virus-like particles (VLPs) of plant, bacteriophage and mammalian origin can be similarly employed as intratumoral immunotherapy. Our results indicate that CPMV in situ vaccine outperforms Cowpea chlorotic mottle virus (CCMV), Physalis mosaic virus (PhMV), Sesbania mosaic virus (SeMV), bacteriophage Qß VLPs, or Hepatitis B virus capsids (HBVc). Furthermore, ex vivo and in vitro assays reveal unique features of CPMV that makes it an inherently stronger immune stimulant.


Assuntos
Vacinas Anticâncer , Comovirus , Nanopartículas , Neoplasias , Vírus , Animais , Cães , Humanos , Imunoterapia , Camundongos
2.
Methods Mol Biol ; 2000: 111-124, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31148013

RESUMO

Viral nanoparticles are self-assembling units that are being developed and applied for a variety of applications. While most clinical uses involve animal viruses, a plant-derived virus, cowpea mosaic virus (CPMV) has been shown to have antitumor properties in mice when applied as in situ vaccine. Here we describe the production and characterization of CPMV and its use as in situ vaccines in the context of cancer. Subsequent analyses to obtain efficacy or mechanistic data are also detailed.


Assuntos
Vacinas Anticâncer , Comovirus , Imunoterapia/métodos , Nanopartículas , Animais , Melanoma/imunologia , Melanoma/terapia , Camundongos
3.
Mol Pharm ; 15(9): 3700-3716, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-29798673

RESUMO

Cancer immunotherapy approaches have emerged as novel treatment regimens against cancer. A particularly interesting avenue is the concept of in situ vaccination, where immunostimulatory agents are introduced into an identified tumor to overcome local immunosuppression and, if successful, mount systemic antitumor immunity. We had previously shown that nanoparticles from cowpea mosaic virus (CPMV) are highly potent in inducing long-lasting antitumor immunity when used as an in situ vaccine in various tumor mouse models. Here we asked whether the nanoparticles from tobacco mosaic virus (TMV) could also be applied as an in situ vaccine and, if so, whether efficacy or mechanism of immune-activation would be affected by the nanoparticle size (300 × 18 nm native TMV vs 50 × 18 nm short TMV nanorods), shape (nanorods vs spherical TMV, termed SNP), or state of assembly (assembled TMV rod vs free coat protein, CP). Our studies indicate that CPMV, but less so TMV, elicits potent antitumor immunity after intratumoral treatment of dermal melanoma (B16F10 using C57BL/6 mice). TMV and TMVshort slowed tumor growth and increased survival time, however, at significantly lower potency compared to that of CPMV. There were no apparent differences between TMV, TMVshort, or the SNP indicating that the aspect ratio does not necessarily play a role in plant viral in situ vaccines. The free CPs did not elicit an antitumor response or immunostimulation, which may indicate that a multivalent assembly is required to trigger an innate immune recognition and activation. Differential potency of CPMV vs TMV can be explained with differences in immune-activation: data indicate that CPMV stimulates an antitumor response through recruitment of monocytes into the tumor microenvironment (TME), establishing signaling through the IFN-γ pathway, which also leads to recruitment of tumor-infiltrated neutrophils (TINs) and natural killer (NK) cells. Furthermore, the priming of the innate immune system also mounts an adaptive response with CD4+ and CD8+ T cell recruitment and establishment of effector memory cells. While the TMV treatment also lead to the recruitment of innate immune cells as well as T cells (although to a lesser degree), key differences were noted in cyto/chemokine profiling with TMV inducing a potent immune response early on characterized by strong pro-inflammatory cytokines, primarily IL-6. Together, data indicate that some plant viral nanotechnology platforms are more suitable for application as in situ vaccines than others; understanding the intricate differences and underlying mechanism of immune-activation may set the stage for clinical development of these technologies.


Assuntos
Comovirus/fisiologia , Melanoma/prevenção & controle , Neoplasias Cutâneas/prevenção & controle , Vírus do Mosaico do Tabaco/fisiologia , Animais , Vacinas Anticâncer/uso terapêutico , Cromatografia Líquida , Eletroforese em Gel de Ágar , Citometria de Fluxo , Imuno-Histoquímica , Imunoterapia , Masculino , Melanoma/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão e Varredura , Microscopia Eletrônica de Transmissão , Neoplasias Cutâneas/imunologia , Vacinação/métodos , Melanoma Maligno Cutâneo
4.
Nano Lett ; 17(7): 4019-4028, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28650644

RESUMO

Immunotherapeutics are gaining more traction in the armamentarium used to combat cancer. Specifically, in situ vaccination strategies have gained interest because of their ability to alter the tumor microenvironment to an antitumor state. Herein, we investigate whether flexuous plant virus-based nanoparticles formed by the potato virus X (PVX) can be used as an immunotherapeutic for in situ vaccine monotherapy. We further developed dual chemo-immunotherapeutics by incorporating doxorubicin (DOX) into PVX yielding a dual-functional nanoparticle (PVX-DOX) or by coadministration of the two therapeutic regimes, PVX immunotherapy and DOX chemotherapy (PVX+DOX). In the context of B16F10 melanoma, PVX was able to elicit delayed tumor progression when administered as an intratumoral in situ vaccine. Furthermore, the coadministration of DOX via PVX+DOX enhanced the response of the PVX monotherapy through increased survival, which was also represented in the enhanced antitumor cytokine/chemokine profile stimulated by PVX+DOX when compared to PVX or DOX alone. Importantly, coadministered PVX+DOX was better for in situ vaccination than PVX loaded with DOX (PVX-DOX). Whereas the nanomedicine field strives to design multifunctional nanoparticles that integrate several functions and therapeutic regimens into a single nanoparticle, our data suggest a paradigm shift; some therapeutics may need to be administered separately to synergize and achieve the most potent therapeutic outcome. Altogether, our studies show that development of plant viral nanoparticles for in situ vaccines for treatment is a possibility, and dual mechanistic therapeutics can increase efficacy. Nonetheless, combining immunotherapeutics with cytolytic chemotherapy requires detailed investigation to inform optimal integration of cytolytic and immunotherapies and maximize synergy and efficacy.


Assuntos
Antineoplásicos/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Doxorrubicina/administração & dosagem , Nanopartículas/química , Potexvirus/imunologia , Animais , Antineoplásicos/química , Vacinas Anticâncer/química , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Sobrevivência Celular , Doxorrubicina/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Imunoterapia/métodos , Injeções Intralesionais , Masculino , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Camundongos Endogâmicos C57BL , Potexvirus/química , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/química , Vacinas de Partículas Semelhantes a Vírus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA