Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(34): e2209735120, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579162

RESUMO

The hydroxyl radical (OH) fuels atmospheric chemical cycling as the main sink for methane and a driver of the formation and loss of many air pollutants, but direct OH observations are sparse. We develop and evaluate an observation-based proxy for short-term, spatial variations in OH (ProxyOH) in the remote marine troposphere using comprehensive measurements from the NASA Atmospheric Tomography (ATom) airborne campaign. ProxyOH is a reduced form of the OH steady-state equation representing the dominant OH production and loss pathways in the remote marine troposphere, according to box model simulations of OH constrained with ATom observations. ProxyOH comprises only eight variables that are generally observed by routine ground- or satellite-based instruments. ProxyOH scales linearly with in situ [OH] spatial variations along the ATom flight tracks (median r2 = 0.90, interquartile range = 0.80 to 0.94 across 2-km altitude by 20° latitudinal regions). We deconstruct spatial variations in ProxyOH as a first-order approximation of the sensitivity of OH variations to individual terms. Two terms modulate within-region ProxyOH variations-water vapor (H2O) and, to a lesser extent, nitric oxide (NO). This implies that a limited set of observations could offer an avenue for observation-based mapping of OH spatial variations over much of the remote marine troposphere. Both H2O and NO are expected to change with climate, while NO also varies strongly with human activities. We also illustrate the utility of ProxyOH as a process-based approach for evaluating intermodel differences in remote marine tropospheric OH.

2.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34930838

RESUMO

Ozone is the third most important anthropogenic greenhouse gas after carbon dioxide and methane but has a larger uncertainty in its radiative forcing, in part because of uncertainty in the source characteristics of ozone precursors, nitrogen oxides, and volatile organic carbon that directly affect ozone formation chemistry. Tropospheric ozone also negatively affects human and ecosystem health. Biomass burning (BB) and urban emissions are significant but uncertain sources of ozone precursors. Here, we report global-scale, in situ airborne measurements of ozone and precursor source tracers from the NASA Atmospheric Tomography mission. Measurements from the remote troposphere showed that tropospheric ozone is regularly enhanced above background in polluted air masses in all regions of the globe. Ozone enhancements in air with high BB and urban emission tracers (2.1 to 23.8 ppbv [parts per billion by volume]) were generally similar to those in BB-influenced air (2.2 to 21.0 ppbv) but larger than those in urban-influenced air (-7.7 to 6.9 ppbv). Ozone attributed to BB was 2 to 10 times higher than that from urban sources in the Southern Hemisphere and the tropical Atlantic and roughly equal to that from urban sources in the Northern Hemisphere and the tropical Pacific. Three independent global chemical transport models systematically underpredict the observed influence of BB on tropospheric ozone. Potential reasons include uncertainties in modeled BB injection heights and emission inventories, export efficiency of BB emissions to the free troposphere, and chemical mechanisms of ozone production in smoke. Accurately accounting for intermittent but large and widespread BB emissions is required to understand the global tropospheric ozone burden.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Biomassa , Ozônio , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Atmosfera , Ecossistema , Incêndios , Ozônio/análise , Ozônio/química
3.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34686608

RESUMO

The hydroxyl radical (OH) sets the oxidative capacity of the atmosphere and, thus, profoundly affects the removal rate of pollutants and reactive greenhouse gases. While observationally derived constraints exist for global annual mean present-day OH abundances and interannual variability, OH estimates for past and future periods rely primarily on global atmospheric chemistry models. These models disagree ± 30% in mean OH and in its changes from the preindustrial to late 21st century, even when forced with identical anthropogenic emissions. A simple steady-state relationship that accounts for ozone photolysis frequencies, water vapor, and the ratio of reactive nitrogen to carbon emissions explains temporal variability within most models, but not intermodel differences. Here, we show that departure from the expected relationship reflects the treatment of reactive oxidized nitrogen species (NO y ) and the fraction of emitted carbon that reacts within each chemical mechanism, which remain poorly known due to a lack of observational data. Our findings imply a need for additional observational constraints on NO y partitioning and lifetime, especially in the remote free troposphere, as well as the fate of carbon-containing reaction intermediates to test models, thereby reducing uncertainties in projections of OH and, hence, lifetimes of pollutants and greenhouse gases.

4.
Geophys Res Lett ; 48(10): e2021GL092783, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34149109

RESUMO

Satellite nitrogen dioxide (NO2) measurements are used extensively to infer nitrogen oxide emissions and their trends, but interpretation can be complicated by background contributions to the NO2 column sensed from space. We use the step decrease of US anthropogenic emissions from the COVID-19 shutdown to compare the responses of NO2 concentrations observed at surface network sites and from satellites (Ozone Monitoring Instrument [OMI], Tropospheric Ozone Monitoring Instrument [TROPOMI]). After correcting for differences in meteorology, surface NO2 measurements for 2020 show decreases of 20% in March-April and 10% in May-August compared to 2019. The satellites show much weaker responses in March-June and no decrease in July-August, consistent with a large background contribution to the NO2 column. Inspection of the long-term OMI trend over remote US regions shows a rising summertime NO2 background from 2010 to 2019 potentially attributable to wildfires.

5.
J Adv Model Earth Syst ; 12(8): e2019MS002025, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32999704

RESUMO

This paper describes the GISS-E2.1 contribution to the Coupled Model Intercomparison Project, Phase 6 (CMIP6). This model version differs from the predecessor model (GISS-E2) chiefly due to parameterization improvements to the atmospheric and ocean model components, while keeping atmospheric resolution the same. Model skill when compared to modern era climatologies is significantly higher than in previous versions. Additionally, updates in forcings have a material impact on the results. In particular, there have been specific improvements in representations of modes of variability (such as the Madden-Julian Oscillation and other modes in the Pacific) and significant improvements in the simulation of the climate of the Southern Oceans, including sea ice. The effective climate sensitivity to 2 × CO2 is slightly higher than previously at 2.7-3.1°C (depending on version) and is a result of lower CO2 radiative forcing and stronger positive feedbacks.

6.
Nature ; 570(7760): 224-227, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31190014

RESUMO

Tropospheric ozone (O3) is a key component of air pollution and an important anthropogenic greenhouse gas1. During the twentieth century, the proliferation of the internal combustion engine, rapid industrialization and land-use change led to a global-scale increase in O3 concentrations2,3; however, the magnitude of this increase is uncertain. Atmospheric chemistry models typically predict4-7 an increase in the tropospheric O3 burden of between 25 and 50 per cent since 1900, whereas direct measurements made in the late nineteenth century indicate that surface O3 mixing ratios increased by up to 300 per cent8-10 over that time period. However, the accuracy and diagnostic power of these measurements remains controversial2. Here we use a record of the clumped-isotope composition of molecular oxygen (18O18O in O2) trapped in polar firn and ice from 1590 to 2016 AD, as well as atmospheric chemistry model simulations, to constrain changes in tropospheric O3 concentrations. We find that during the second half of the twentieth century, the proportion of 18O18O in O2 decreased by 0.03 ± 0.02 parts per thousand (95 per cent confidence interval) below its 1590-1958 AD mean, which implies that tropospheric O3 increased by less than 40 per cent during that time. These results corroborate model predictions of global-scale increases in surface pollution and vegetative stress caused by increasing anthropogenic emissions of O3 precursors4,5,11. We also estimate that the radiative forcing of tropospheric O3 since 1850 AD is probably less than +0.4 watts per square metre, consistent with results from recent climate modelling studies12.


Assuntos
Atmosfera/química , Ozônio/análise , Ozônio/química , Arquivos , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Atividades Humanas/história , Isótopos de Oxigênio/análise , Isótopos de Oxigênio/química , Ozônio/história , Reprodutibilidade dos Testes , Ozônio Estratosférico/análise , Ozônio Estratosférico/química
7.
Nature ; 546(7656): 133-136, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28514452

RESUMO

The abundance of tropospheric oxidants, such as ozone (O3) and hydroxyl (OH) and peroxy radicals (HO2 + RO2), determines the lifetimes of reduced trace gases such as methane and the production of particulate matter important for climate and human health. The response of tropospheric oxidants to climate change is poorly constrained owing to large uncertainties in the degree to which processes that influence oxidants may change with climate and owing to a lack of palaeo-records with which to constrain levels of atmospheric oxidants during past climate transitions. At present, it is thought that temperature-dependent emissions of tropospheric O3 precursors and water vapour abundance determine the climate response of oxidants, resulting in lower tropospheric O3 in cold climates while HOx (= OH + HO2 + RO2) remains relatively buffered. Here we report observations of oxygen-17 excess of nitrate (a proxy for the relative abundance of atmospheric O3 and HOx) from a Greenland ice core over the most recent glacial-interglacial cycle and for two Dansgaard-Oeschger events. We find that tropospheric oxidants are sensitive to climate change with an increase in the O3/HOx ratio in cold climates, the opposite of current expectations. We hypothesize that the observed increase in O3/HOx in cold climates is driven by enhanced stratosphere-to-troposphere transport of O3, and that reactive halogen chemistry is also enhanced in cold climates. Reactive halogens influence the oxidative capacity of the troposphere directly as oxidants themselves and indirectly via their influence on O3 and HOx. The strength of stratosphere-to-troposphere transport is largely controlled by the Brewer-Dobson circulation, which may be enhanced in colder climates owing to a stronger meridional gradient of sea surface temperatures, with implications for the response of tropospheric oxidants and stratospheric thermal and mass balance. These two processes may represent important, yet relatively unexplored, climate feedback mechanisms during major climate transitions.

8.
J Geophys Res Atmos ; 122(19): 10-461, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29682438

RESUMO

Determining effective strategies for mitigating surface ozone (O3) pollution requires knowledge of the relative ambient concentrations of its precursors, NO x , and VOCs. The space-based tropospheric column ratio of formaldehyde to NO2 (FNR) has been used as an indicator to identify NO x -limited versus NO x -saturated O3 formation regimes. Quantitative use of this indicator ratio is subject to three major uncertainties: (1) the split between NO x -limited and NO x -saturated conditions may shift in space and time, (2) the ratio of the vertically integrated column may not represent the near-surface environment, and (3) satellite products contain errors. We use the GEOS-Chem global chemical transport model to evaluate the quantitative utility of FNR observed from the Ozone Monitoring Instrument over three northern midlatitude source regions. We find that FNR in the model surface layer is a robust predictor of the simulated near-surface O3 production regime. Extending this surface-based predictor to a column-based FNR requires accounting for differences in the HCHO and NO2 vertical profiles. We compare four combinations of two OMI HCHO and NO2 retrievals with modeled FNR. The spatial and temporal correlations between the modeled and satellite-derived FNR vary with the choice of NO2 product, while the mean offset depends on the choice of HCHO product. Space-based FNR indicates that the spring transition to NO x -limited regimes has shifted at least a month earlier over major cities (e.g., New York, London, and Seoul) between 2005 and 2015. This increase in NO x sensitivity implies that NO x emission controls will improve O3 air quality more now than it would have a decade ago.

9.
Environ Sci Technol ; 46(8): 4275-82, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22380547

RESUMO

In jurisdictions including the US and the EU ground transportation and marine fuels have recently been required to contain lower concentrations of sulfur, which has resulted in reduced atmospheric SO(x) emissions. In contrast, the maximum sulfur content of aviation fuel has remained unchanged at 3000 ppm (although sulfur levels average 600 ppm in practice). We assess the costs and benefits of a potential ultra-low sulfur (15 ppm) jet fuel standard ("ULSJ"). We estimate that global implementation of ULSJ will cost US$1-4bn per year and prevent 900-4000 air quality-related premature mortalities per year. Radiative forcing associated with reduction in atmospheric sulfate, nitrate, and ammonium loading is estimated at +3.4 mW/m(2) (equivalent to about 1/10th of the warming due to CO(2) emissions from aviation) and ULSJ increases life cycle CO(2) emissions by approximately 2%. The public health benefits are dominated by the reduction in cruise SO(x) emissions, so a key uncertainty is the atmospheric modeling of vertical transport of pollution from cruise altitudes to the ground. Comparisons of modeled and measured vertical profiles of CO, PAN, O(3), and (7)Be indicate that this uncertainty is low relative to uncertainties regarding the value of statistical life and the toxicity of fine particulate matter.


Assuntos
Poluentes Atmosféricos/normas , Poluição do Ar/prevenção & controle , Hidrocarbonetos/normas , Óxidos de Enxofre/normas , Enxofre/normas , Poluentes Atmosféricos/economia , Poluentes Atmosféricos/toxicidade , Poluição do Ar/economia , Poluição do Ar/legislação & jurisprudência , Mudança Climática , Análise Custo-Benefício , Humanos , Modelos Teóricos , Material Particulado/economia , Material Particulado/normas , Material Particulado/toxicidade , Enxofre/economia , Óxidos de Enxofre/economia , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA