Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Curr Biol ; 34(9): R348-R351, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38714162

RESUMO

A recent study has used scalp-recorded electroencephalography to obtain evidence of semantic processing of human speech and objects by domesticated dogs. The results suggest that dogs do comprehend the meaning of familiar spoken words, in that a word can evoke the mental representation of the object to which it refers.


Assuntos
Cognição , Semântica , Animais , Cães/psicologia , Cognição/fisiologia , Humanos , Eletroencefalografia , Fala/fisiologia , Percepção da Fala/fisiologia , Compreensão/fisiologia
2.
NPJ Sci Learn ; 8(1): 61, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38102127

RESUMO

Learning spatial layouts and navigating through them rely not simply on sight but rather on multisensory processes, including touch. Digital haptics based on ultrasounds are effective for creating and manipulating mental images of individual objects in sighted and visually impaired participants. Here, we tested if this extends to scenes and navigation within them. Using only tactile stimuli conveyed via ultrasonic feedback on a digital touchscreen (i.e., a digital interactive map), 25 sighted, blindfolded participants first learned the basic layout of an apartment based on digital haptics only and then one of two trajectories through it. While still blindfolded, participants successfully reconstructed the haptically learned 2D spaces and navigated these spaces. Digital haptics were thus an effective means to learn and translate, on the one hand, 2D images into 3D reconstructions of layouts and, on the other hand, navigate actions within real spaces. Digital haptics based on ultrasounds represent an alternative learning tool for complex scenes as well as for successful navigation in previously unfamiliar layouts, which can likely be further applied in the rehabilitation of spatial functions and mitigation of visual impairments.

3.
Brain Topogr ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38010487

RESUMO

More than 10% of births are preterm, and the long-term consequences on sensory and semantic processing of non-linguistic information remain poorly understood. 17 very preterm-born children (born at < 33 weeks gestational age) and 15 full-term controls were tested at 10 years old with an auditory object recognition task, while 64-channel auditory evoked potentials (AEPs) were recorded. Sounds consisted of living (animal and human vocalizations) and manmade objects (e.g. household objects, instruments, and tools). Despite similar recognition behavior, AEPs strikingly differed between full-term and preterm children. Starting at 50ms post-stimulus onset, AEPs from preterm children differed topographically from their full-term counterparts. Over the 108-224ms post-stimulus period, full-term children showed stronger AEPs in response to living objects, whereas preterm born children showed the reverse pattern; i.e. stronger AEPs in response to manmade objects. Differential brain activity between semantic categories could reliably classify children according to their preterm status. Moreover, this opposing pattern of differential responses to semantic categories of sounds was also observed in source estimations within a network of occipital, temporal and frontal regions. This study highlights how early life experience in terms of preterm birth shapes sensory and object processing later on in life.

4.
Curr Res Neurobiol ; 4: 100083, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397808

RESUMO

The ability to process speech in noise (SPiN) declines with age, with a detrimental impact on life quality. Music-making activities such as singing and playing a musical instrument have raised interest as potential prevention strategies for SPiN perception decline because of their positive impact on several brain system, especially the auditory system, which is critical for SPiN. However, the literature on the effect of musicianship on SPiN performance has yielded mixed results. By critically assessing the existing literature with a systematic review and a meta-analysis, we aim to provide a comprehensive portrait of the relationship between music-making activities and SPiN in different experimental conditions. 38/49 articles, most focusing on young adults, were included in the quantitative analysis. The results show a positive relationship between music-making activities and SPiN, with the strongest effects found in the most challenging listening conditions, and little to no effect in less challenging situations. This pattern of results supports the notion of a relative advantage for musicians on SPiN performance and clarify the scope of this effect. However, further studies, especially with older adults, using adequate randomization methods, are needed to extend the present conclusions and assess the potential for musical activities to be used to mitigate SPiN decline in seniors.

5.
bioRxiv ; 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37425913

RESUMO

Functional magnetic resonance imaging (fMRI) is a methodological cornerstone of neuroscience. Most studies measure blood-oxygen-level-dependent (BOLD) signal using echo-planar imaging (EPI), Cartesian sampling, and image reconstruction with a one-to-one correspondence between the number of acquired volumes and reconstructed images. However, EPI schemes are subject to trade-offs between spatial and temporal resolutions. We overcome these limitations by measuring BOLD with a gradient recalled echo (GRE) with 3D radial-spiral phyllotaxis trajectory at a high sampling rate (28.24ms) on standard 3T field-strength. The framework enables the reconstruction of 3D signal time courses with whole-brain coverage at simultaneously higher spatial (1mm 3 ) and temporal (up to 250ms) resolutions, as compared to optimized EPI schemes. Additionally, artifacts are corrected before image reconstruction; the desired temporal resolution is chosen after scanning and without assumptions on the shape of the hemodynamic response. By showing activation in the calcarine sulcus of 20 participants performing an ON-OFF visual paradigm, we demonstrate the reliability of our method for cognitive neuroscience research.

6.
BMJ Open ; 13(4): e067013, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072356

RESUMO

INTRODUCTION: Food cravings are common in pregnancy and along with emotional eating and eating in the absence of hunger, they are associated with excessive weight gain and adverse effects on metabolic health including gestational diabetes mellitus (GDM). Women with GDM also show poorer mental health, which further can contribute to dysregulated eating behaviour. Food cravings can lead to greater activity in brain centres known to be involved in food 'wanting' and reward valuation as well as emotional eating. They are also related to gestational weight gain. Thus, there is a great need to link implicit brain responses to food with explicit measures of food intake behaviour, especially in the perinatal period. The aim of this study is to investigate the spatiotemporal brain dynamics to visual presentations of food in women during pregnancy and in the post partum, and link these brain responses to the eating behaviour and metabolic health outcomes in women with and without GDM. METHODS AND ANALYSIS: This prospective observational study will include 20 women with and 20 without GDM, that have valid data for the primary outcomes. Data will be assessed at 24-36 weeks gestational age and at 6 months post partum. The primary outcomes are brain responses to food pictures of varying carbohydrate and fat content during pregnancy and in the post partum using electroencephalography. Secondary outcomes including depressive symptoms, current mood and eating behaviours will be assessed with questionnaires, objective eating behaviours will be measured using Auracle and stress will be measured with heart rate and heart rate variability (Actiheart). Other secondary outcome measures include body composition and glycaemic control parameters. ETHICS AND DISSEMINATION: The Human Research Ethics Committee of the Canton de Vaud approved the study protocol (2021-01976). Study results will be presented at public and scientific conferences and in peer-reviewed journals.


Assuntos
Diabetes Gestacional , Período Pós-Parto , Gravidez , Feminino , Humanos , Lactente , Período Pós-Parto/psicologia , Diabetes Gestacional/psicologia , Comportamento Alimentar , Alimentos , Encéfalo , Estudos Observacionais como Assunto
7.
Ear Hear ; 44(4): 803-815, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36706057

RESUMO

OBJECTIVES: The objective of this study was to investigate whether a brief speech-in-noise training with a remote microphone (RM) system (favorable listening condition) would contribute to enhanced post-training plasticity changes in the auditory system of school-age children. DESIGN: Before training, event-related potentials (ERPs) were recorded from 49 typically developing children, who actively identified two syllables in quiet and in noise (+5 dB signal-to-noise ratio [SNR]). During training, children completed the same syllable identification task as in the pre-training noise condition, but received feedback on their performance. Following random assignment, half of the sample used an RM system during training (experimental group), while the other half did not (control group). That is, during training' children in the experimental group listened to a more favorable speech signal (+15 dB SNR) than children from the control group (+5 dB SNR). ERPs were collected after training at +5 dB SNR to evaluate the effects of training with and without the RM system. Electrical neuroimaging analyses quantified the effects of training in each group on ERP global field power (GFP) and topography, indexing response strength and network changes, respectively. Behavioral speech-perception-in-noise skills of children were also evaluated and compared before and after training. We hypothesized that training with the RM system (experimental group) would lead to greater enhancement of GFP and greater topographical changes post-training than training without the RM system (control group). We also expected greater behavioral improvement on the speech-perception-in-noise task when training with than without the RM system. RESULTS: GFP was enhanced after training only in the experimental group. These effects were observed on early time-windows corresponding to traditional P1-N1 (100 to 200 msec) and P2-N2 (200 to 400 msec) ERP components. No training effects were observed on response topography. Finally, both groups increased their speech-perception-in-noise skills post-training. CONCLUSIONS: Enhanced GFP after training with the RM system indicates plasticity changes in the neural representation of sound resulting from listening to an enriched auditory signal. Further investigation of longer training or auditory experiences with favorable listening conditions is needed to determine if that results in long-term speech-perception-in-noise benefits.


Assuntos
Ruído , Percepção da Fala , Humanos , Criança , Potenciais Evocados , Fala , Percepção da Fala/fisiologia , Som
8.
Brain Topogr ; 36(2): 172-191, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36575327

RESUMO

How functional magnetic resonance imaging (fMRI) data are analyzed depends on the researcher and the toolbox used. It is not uncommon that the processing pipeline is rewritten for each new dataset. Consequently, code transparency, quality control and objective analysis pipelines are important for improving reproducibility in neuroimaging studies. Toolboxes, such as Nipype and fMRIPrep, have documented the need for and interest in automated pre-processing analysis pipelines. Recent developments in data-driven models combined with high resolution neuroimaging dataset have strengthened the need not only for a standardized preprocessing workflow, but also for a reliable and comparable statistical pipeline. Here, we introduce fMRIflows: a consortium of fully automatic neuroimaging pipelines for fMRI analysis, which performs standard preprocessing, as well as 1st- and 2nd-level univariate and multivariate analyses. In addition to the standardized pre-processing pipelines, fMRIflows provides flexible temporal and spatial filtering to account for datasets with increasingly high temporal resolution and to help appropriately prepare data for advanced machine learning analyses, improving signal decoding accuracy and reliability. This paper first describes fMRIflows' structure and functionality, then explains its infrastructure and access, and lastly validates the toolbox by comparing it to other neuroimaging processing pipelines such as fMRIPrep, FSL and SPM. This validation was performed on three datasets with varying temporal sampling and acquisition parameters to prove its flexibility and robustness. fMRIflows is a fully automatic fMRI processing pipeline which uniquely offers univariate and multivariate single-subject and group analyses as well as pre-processing.


Assuntos
Imageamento por Ressonância Magnética , Software , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador/métodos , Neuroimagem , Encéfalo/diagnóstico por imagem
9.
Curr Res Neurobiol ; 3: 100059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405629

RESUMO

Hearing with a cochlear implant (CI) is limited compared to natural hearing. Although CI users may develop compensatory strategies, it is currently unknown whether these extend from auditory to visual functions, and whether compensatory strategies vary between different CI user groups. To better understand the experience-dependent contributions to multisensory plasticity in audiovisual speech perception, the current event-related potential (ERP) study presented syllables in auditory, visual, and audiovisual conditions to CI users with unilateral or bilateral hearing loss, as well as to normal-hearing (NH) controls. Behavioural results revealed shorter audiovisual response times compared to unisensory conditions for all groups. Multisensory integration was confirmed by electrical neuroimaging, including topographic and ERP source analysis, showing a visual modulation of the auditory-cortex response at N1 and P2 latency. However, CI users with bilateral hearing loss showed a distinct pattern of N1 topography, indicating a stronger visual impact on auditory speech processing compared to CI users with unilateral hearing loss and NH listeners. Furthermore, both CI user groups showed a delayed auditory-cortex activation and an additional recruitment of the visual cortex, and a better lip-reading ability compared to NH listeners. In sum, these results extend previous findings by showing distinct multisensory processes not only between NH listeners and CI users in general, but even between CI users with unilateral and bilateral hearing loss. However, the comparably enhanced lip-reading ability and visual-cortex activation in both CI user groups suggest that these visual improvements are evident regardless of the hearing status of the contralateral ear.

10.
Sci Rep ; 12(1): 9728, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710569

RESUMO

Dashboard-mounted touchscreen tablets are now common in vehicles. Screen/phone use in cars likely shifts drivers' attention away from the road and contributes to risk of accidents. Nevertheless, vision is subject to multisensory influences from other senses. Haptics may help maintain or even increase visual attention to the road, while still allowing for reliable dashboard control. Here, we provide a proof-of-concept for the effectiveness of digital haptic technologies (hereafter digital haptics), which use ultrasonic vibrations on a tablet screen to render haptic perceptions. Healthy human participants (N = 25) completed a divided-attention paradigm. The primary task was a centrally-presented visual conjunction search task, and the secondary task entailed control of laterally-presented sliders on the tablet. Sliders were presented visually, haptically, or visuo-haptically and were vertical, horizontal or circular. We reasoned that the primary task would be performed best when the secondary task was haptic-only. Reaction times (RTs) on the visual search task were fastest when the tablet task was haptic-only. This was not due to a speed-accuracy trade-off; there was no evidence for modulation of VST accuracy according to modality of the tablet task. These results provide the first quantitative support for introducing digital haptics into vehicle and similar contexts.


Assuntos
Tecnologia Háptica , Percepção Visual , Humanos , Visão Ocular
11.
Comput Methods Programs Biomed ; 221: 106929, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35675721

RESUMO

BACKGROUND AND OBJECTIVE: Eye-movement trajectories are rich behavioral data, providing a window on how the brain processes information. We address the challenge of characterizing signs of visuo-spatial neglect from saccadic eye trajectories recorded in brain-damaged patients with spatial neglect as well as in healthy controls during a visual search task. METHODS: We establish a standardized pre-processing pipeline adaptable to other task-based eye-tracker measurements. We use traditional machine learning algorithms together with deep convolutional networks (both 1D and 2D) to automatically analyze eye trajectories. RESULTS: Our top-performing machine learning models classified neglect patients vs. healthy individuals with an Area Under the ROC curve (AUC) ranging from 0.83 to 0.86. Moreover, the 1D convolutional neural network scores correlated with the degree of severity of neglect behavior as estimated with standardized paper-and-pencil tests and with the integrity of white matter tracts measured from Diffusion Tensor Imaging (DTI). Interestingly, the latter showed a clear correlation with the third branch of the superior longitudinal fasciculus (SLF), especially damaged in neglect. CONCLUSIONS: The study introduces new methods for both the pre-processing and the classification of eye-movement trajectories in patients with neglect syndrome. The proposed methods can likely be applied to other types of neurological diseases opening the possibility of new computer-aided, precise, sensitive and non-invasive diagnostic tools.


Assuntos
Imagem de Tensor de Difusão , Transtornos da Percepção , Algoritmos , Tecnologia de Rastreamento Ocular , Humanos , Aprendizado de Máquina , Transtornos da Percepção/diagnóstico
12.
Neuroimage Clin ; 34: 102982, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35303598

RESUMO

A cochlear implant (CI) is an auditory prosthesis which can partially restore the auditory function in patients with severe to profound hearing loss. However, this bionic device provides only limited auditory information, and CI patients may compensate for this limitation by means of a stronger interaction between the auditory and visual system. To better understand the electrophysiological correlates of audiovisual speech perception, the present study used electroencephalography (EEG) and a redundant target paradigm. Postlingually deafened CI users and normal-hearing (NH) listeners were compared in auditory, visual and audiovisual speech conditions. The behavioural results revealed multisensory integration for both groups, as indicated by shortened response times for the audiovisual as compared to the two unisensory conditions. The analysis of the N1 and P2 event-related potentials (ERPs), including topographic and source analyses, confirmed a multisensory effect for both groups and showed a cortical auditory response which was modulated by the simultaneous processing of the visual stimulus. Nevertheless, the CI users in particular revealed a distinct pattern of N1 topography, pointing to a strong visual impact on auditory speech processing. Apart from these condition effects, the results revealed ERP differences between CI users and NH listeners, not only in N1/P2 ERP topographies, but also in the cortical source configuration. When compared to the NH listeners, the CI users showed an additional activation in the visual cortex at N1 latency, which was positively correlated with CI experience, and a delayed auditory-cortex activation with a reversed, rightward functional lateralisation. In sum, our behavioural and ERP findings demonstrate a clear audiovisual benefit for both groups, and a CI-specific alteration in cortical activation at N1 latency when auditory and visual input is combined. These cortical alterations may reflect a compensatory strategy to overcome the limited CI input, which allows the CI users to improve the lip-reading skills and to approximate the behavioural performance of NH listeners in audiovisual speech conditions. Our results are clinically relevant, as they highlight the importance of assessing the CI outcome not only in auditory-only, but also in audiovisual speech conditions.


Assuntos
Implante Coclear , Implantes Cocleares , Percepção da Fala , Estimulação Acústica/métodos , Percepção Auditiva/fisiologia , Potenciais Evocados , Humanos , Fala , Percepção da Fala/fisiologia , Percepção Visual/fisiologia
14.
Brain Topogr ; 35(1): 79-95, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35001322

RESUMO

Electroencephalography (EEG) is among the most widely diffused, inexpensive, and adopted neuroimaging techniques. Nonetheless, EEG requires measurements against a reference site(s), which is typically chosen by the experimenter, and specific pre-processing steps precede analyses. It is therefore valuable to obtain quantities that are minimally affected by reference and pre-processing choices. Here, we show that the topological structure of embedding spaces, constructed either from multi-channel EEG timeseries or from their temporal structure, are subject-specific and robust to re-referencing and pre-processing pipelines. By contrast, the shape of correlation spaces, that is, discrete spaces where each point represents an electrode and the distance between them that is in turn related to the correlation between the respective timeseries, was neither significantly subject-specific nor robust to changes of reference. Our results suggest that the shape of spaces describing the observed configurations of EEG signals holds information about the individual specificity of the underlying individual's brain dynamics, and that temporal correlations constrain to a large degree the set of possible dynamics. In turn, these encode the differences between subjects' space of resting state EEG signals. Finally, our results and proposed methodology provide tools to explore the individual topographical landscapes and how they are explored dynamically. We propose therefore to augment conventional topographic analyses with an additional-topological-level of analysis, and to consider them jointly. More generally, these results provide a roadmap for the incorporation of topological analyses within EEG pipelines.


Assuntos
Encéfalo , Eletroencefalografia , Eletrodos , Eletroencefalografia/métodos , Cabeça , Humanos
15.
Neuroimage Clin ; 33: 102942, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35033811

RESUMO

In naturalistic situations, sounds are often perceived in conjunction with matching visual impressions. For example, we see and hear the neighbor's dog barking in the garden. Still, there is a good chance that we recognize the neighbor's dog even when we only hear it barking, but do not see it behind the fence. Previous studies with normal-hearing (NH) listeners have shown that the audio-visual presentation of a perceptual object (like an animal) increases the probability to recognize this object later on, even if the repeated presentation of this object occurs in a purely auditory condition. In patients with a cochlear implant (CI), however, the electrical hearing of sounds is impoverished, and the ability to recognize perceptual objects in auditory conditions is significantly limited. It is currently not well understood whether CI users - as NH listeners - show a multisensory facilitation for auditory recognition. The present study used event-related potentials (ERPs) and a continuous recognition paradigm with auditory and audio-visual stimuli to test the prediction that CI users show a benefit from audio-visual perception. Indeed, the congruent audio-visual context resulted in an improved recognition ability of objects in an auditory-only condition, both in the NH listeners and the CI users. The ERPs revealed a group-specific pattern of voltage topographies and correlations between these ERP maps and the auditory recognition ability, indicating a different processing of congruent audio-visual stimuli in CI users when compared to NH listeners. Taken together, our results point to distinct cortical processing of naturalistic audio-visual objects in CI users and NH listeners, which however allows both groups to improve the recognition ability of these objects in a purely auditory context. Our findings are of relevance for future clinical research since audio-visual perception might also improve the auditory rehabilitation after cochlear implantation.


Assuntos
Implante Coclear , Implantes Cocleares , Percepção da Fala , Estimulação Acústica , Idoso , Percepção Auditiva , Potenciais Evocados , Humanos , Reconhecimento Psicológico , Percepção Visual
16.
Mol Psychiatry ; 27(2): 1192-1204, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34686767

RESUMO

Early detection and intervention in schizophrenia requires mechanism-based biomarkers that capture neural circuitry dysfunction, allowing better patient stratification, monitoring of disease progression and treatment. In prefrontal cortex and blood of redox dysregulated mice (Gclm-KO ± GBR), oxidative stress induces miR-137 upregulation, leading to decreased COX6A2 and mitophagy markers (NIX, Fundc1, and LC3B) and to accumulation of damaged mitochondria, further exacerbating oxidative stress and parvalbumin interneurons (PVI) impairment. MitoQ, a mitochondria-targeted antioxidant, rescued all these processes. Translating to early psychosis patients (EPP), blood exosomal miR-137 increases and COX6A2 decreases, combined with mitophagy markers alterations, suggest that observations made centrally and peripherally in animal model were reflected in patients' blood. Higher exosomal miR-137 and lower COX6A2 levels were associated with a reduction of ASSR gamma oscillations in EEG. As ASSR requires proper PVI-related networks, alterations in miR-137/COX6A2 plasma exosome levels may represent a proxy marker of PVI cortical microcircuit impairment. EPP can be stratified in two subgroups: (a) a patients' group with mitochondrial dysfunction "Psy-D", having high miR-137 and low COX6A2 levels in exosomes, and (b) a "Psy-ND" subgroup with no/low mitochondrial impairment, including patients having miR-137 and COX6A2 levels in the range of controls. Psy-D patients exhibited more impaired ASSR responses in association with worse psychopathological status, neurocognitive performance, and global and social functioning, suggesting that impairment of PVI mitochondria leads to more severe disease profiles. This stratification would allow, with high selectivity and specificity, the selection of patients for treatments targeting brain mitochondria dysregulation and capture the clinical and functional efficacy of future clinical trials.


Assuntos
MicroRNAs , Esquizofrenia , Animais , Biomarcadores/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Interneurônios/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/metabolismo , Parvalbuminas/metabolismo , Esquizofrenia/metabolismo
17.
Neuroimage ; 244: 118556, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34492292

RESUMO

Research on attentional control has largely focused on single senses and the importance of behavioural goals in controlling attention. However, everyday situations are multisensory and contain regularities, both likely influencing attention. We investigated how visual attentional capture is simultaneously impacted by top-down goals, the multisensory nature of stimuli, and the contextual factors of stimuli's semantic relationship and temporal predictability. Participants performed a multisensory version of the Folk et al. (1992) spatial cueing paradigm, searching for a target of a predefined colour (e.g. a red bar) within an array preceded by a distractor. We manipulated: 1) stimuli's goal-relevance via distractor's colour (matching vs. mismatching the target), 2) stimuli's multisensory nature (colour distractors appearing alone vs. with tones), 3) the relationship between the distractor sound and colour (arbitrary vs. semantically congruent) and 4) the temporal predictability of distractor onset. Reaction-time spatial cueing served as a behavioural measure of attentional selection. We also recorded 129-channel event-related potentials (ERPs), analysing the distractor-elicited N2pc component both canonically and using a multivariate electrical neuroimaging framework. Behaviourally, arbitrary target-matching distractors captured attention more strongly than semantically congruent ones, with no evidence for context modulating multisensory enhancements of capture. Notably, electrical neuroimaging of surface-level EEG analyses revealed context-based influences on attention to both visual and multisensory distractors, in how strongly they activated the brain and type of activated brain networks. For both processes, the context-driven brain response modulations occurred long before the N2pc time-window, with topographic (network-based) modulations at ∼30 ms, followed by strength-based modulations at ∼100 ms post-distractor onset. Our results reveal that both stimulus meaning and predictability modulate attentional selection, and they interact while doing so. Meaning, in addition to temporal predictability, is thus a second source of contextual information facilitating goal-directed behaviour. More broadly, in everyday situations, attention is controlled by an interplay between one's goals, stimuli's perceptual salience, meaning and predictability. Our study calls for a revision of attentional control theories to account for the role of contextual and multisensory control.


Assuntos
Atenção/fisiologia , Percepção Visual/fisiologia , Adulto , Sinais (Psicologia) , Eletroencefalografia , Potenciais Evocados/fisiologia , Feminino , Humanos , Masculino , Motivação , Tempo de Reação , Percepção do Tempo , Adulto Jovem
18.
Brain Topogr ; 33(6): 751-766, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32748303

RESUMO

Upper extremity (UE) impairments in infants with cerebral palsy (CP) result from reduced quality of motor experiences and "noisy" sensory inputs. We hypothesized that a neuroscience-based multi-component intervention would improve somatosensory processing and motor measures of more-affected (UEs) in infants with CP and asymmetric UE neurologic impairments, while remaining safe for less-affected UEs. Our randomized controlled trial compared infants (6-24 months) with CP receiving intervention (N = 37) versus a waitlisted group (N = 36). Treatment effects tested a direct measurement of reach smoothness (3D-kinematics), a measure of unimanual fine motor function (Bayley unimanual fine motor raw scores), and EEG measures of cortical somatosensory processing. The four-week therapist-directed, parent-administered intervention included daily (1) bimanual play; (2) less-affected UE wearing soft-constraint (6 h/day, electronically-monitored); (3) reach training on more-affected UE; (4) graduated motor-sensory training; and (5) parent education. Waitlist infants received only bimanual play. Effectiveness and safety were tested; z-scores from 54 posttest-matched typically-developing infants provided benchmarks for treatment effects. Intervention and waitlist infants had no pretest differences. Median weekly constraint wear was 38 h; parent-treatment fidelity averaged > 92%. On the more affected side, the intervention significantly increased smoothness of reach (Cohen's d = - 0.90; p < .001) and unimanual fine motor skill (d = 0.35; p = .004). Using unadjusted p values, intervention improved somatosensory processing (d = 0.53; p = .04). All intervention effects referenced well to typically developing children. Safety of the intervention was demonstrated through positive- or non-effects on measurements involving the constrained, less-affected UE and gross motor function; unexpected treatment effects on reach smoothness occurred in less-affected UEs (d = - 0.85; p = .01). This large clinical trial demonstrated intervention effectiveness and safety for developing sensory and motor systems with improvements in reach smoothness, and developmental abilities.Clinical Trail Registration: ClinicalTrials.gov NCT02567630, registered October 5, 2015.


Assuntos
Paralisia Cerebral , Fenômenos Biomecânicos , Paralisia Cerebral/terapia , Criança , Humanos , Lactente , Destreza Motora , Pais , Extremidade Superior
19.
Brain Topogr ; 33(5): 586-599, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32785800

RESUMO

Multisensory processes include the capacity to combine information from the different senses, often improving stimulus representations and behavior. The extent to which multisensory processes are an innate capacity or instead require experience with environmental stimuli remains debated. We addressed this knowledge gap by studying multisensory processes in prematurely born and full-term infants. We recorded 128-channel event-related potentials (ERPs) from a cohort of 55 full-term and 61 preterm neonates (at an equivalent gestational age) in response to auditory, somatosensory, and combined auditory-somatosensory multisensory stimuli. Data were analyzed within an electrical neuroimaging framework, involving unsupervised topographic clustering of the ERP data. Multisensory processing in full-term infants was characterized by a simple linear summation of responses to auditory and somatosensory stimuli alone, which furthermore shared common ERP topographic features. We refer to the ERP topography observed in full-term infants as "typical infantile processing" (TIP). In stark contrast, preterm infants exhibited non-linear responses and topographies less-often characterized by TIP; there were distinct patterns of ERP topographies to multisensory and summed unisensory conditions. We further observed that the better TIP characterized an infant's ERPs, independently of prematurity, the more typical was the score on the Infant/Toddler Sensory Profile (ITSP) at 12 months of age and the less likely was the child to the show internalizing tendencies at 24 months of age. Collectively, these results highlight striking differences in the brain's responses to multisensory stimuli in children born prematurely; differences that relate to later sensory and internalizing functions.


Assuntos
Potenciais Evocados , Recém-Nascido Prematuro , Sensação , Criança , Pré-Escolar , Feminino , Humanos , Recém-Nascido , Masculino
20.
Brain Topogr ; 33(5): 559-570, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661933

RESUMO

There is ongoing debate regarding the extent to which human cortices are specialized for processing a given sensory input versus a given type of information, independently of the sensory source. Many neuroimaging and electrophysiological studies have reported that primary and extrastriate visual cortices respond to tactile and auditory stimulation, in addition to visual inputs, suggesting these cortices are intrinsically multisensory. In particular for tactile responses, few studies have proven neuronal processes in visual cortex in humans. Here, we assessed tactile responses in both low-level and extrastriate visual cortices using electrocorticography recordings in a human participant. Specifically, we observed significant spectral power increases in the high frequency band (30-100 Hz) in response to tactile stimuli, reportedly associated with spiking neuronal activity, in both low-level visual cortex (i.e. V2) and in the anterior part of the lateral occipital-temporal cortex. These sites were both involved in processing tactile information and responsive to visual stimulation. More generally, the present results add to a mounting literature in support of task-sensitive and sensory-independent mechanisms underlying functions like spatial, motion, and self-processing in the brain and extending from higher-level as well as to low-level cortices.


Assuntos
Mapeamento Encefálico , Eletrocorticografia , Córtex Visual , Adulto , Feminino , Humanos , Estimulação Luminosa , Lobo Temporal , Tato , Percepção Visual , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA