Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(1): e23476, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38169832

RESUMO

Chillies are considered a universal ingredient for imparting flavor and pungency to foods. Pakistan stood in the top twenty countries worldwide by producing 82 thousand Tons of chillies during 2022-23. Chilli fungal contamination and aflatoxin production during drying is a common problem during post-harvest process. Gasses treatment and Ionizing radiations are efficient methods for reducing toxigenic and pathogenic microbial growth in food items. The current study was designed to compare the effects of ethylene oxide (ETO), gamma (GB) & electron beam (EB) treatments on two red chilli local cultivars (Kunri and Hybrid) of Pakistan. After treatment, the chilli samples were analyzed for aflatoxins, physicochemical, quality & safety attributes. All results were subjected to Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), dendrogram and ANOVA to check the correlations, grouping and level of significance within the varieties and treatments. The results showed that moisture and water activity mainly designated PC-2 directions and are slightly positively correlated. Conversely, both fat and proteins have a negative correlation with moisture, ash and water activity. Besides, carotenoids and ABTS assay mainly designated PC-2 directions and are slightly positively correlated. Color, flavonoids and TPC also possess positive correlations among them. ETO depicts effectiveness in the reduction of E. coli but is not effective in saving antioxidant potential such as total flavonoids. Similarly, gamma irradiations showed strong reduction trends in fungal and pathogenic count, however same trend was observed in ascorbic acid too. Besides, the electron beam with dosage levels of 12 and 15 kGy has shown effectiveness against Aspergillus spp., aflatoxins and pathogenic microbial load in addition to saving antioxidant potential (phenolics and flavonoids), physicochemical parameters and color values compared to other applied methods especially in Kunri variety. It was evident from the research that varietal combination in addition to applied treatment must be specially considered while designing a treatment for chillies.

2.
Food Chem ; 427: 136586, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37399645

RESUMO

Fresh-cut Chinese water chestnut (CWC) was treated with high pressure CO2 (HPCD) to inhibit the browning reactions, and the underlying mechanism was investigated in this study. Results showed that HPCD at 2 MPa pressure significantly inhibited lipoxygenase activity and enhanced superoxide dismutase activity, leading to decreased malondialdehyde and H2O2 contents in surface tissue. Moreover, HPCD could reduce total phenols/flavonoids content of surface tissue. Compare with control, homoeriodictyol, hesperetin, and isorhamnetin contents of 2 MPa HPCD-treated samples on day 10 were reduced by 95.72%, 94.31%, and 94.02%, respectively. Furthermore, HPCD treatment enhanced antioxidant enzyme activities, and improved the O2- scavenging ability and reducing power of inner tissue. In conclusion, by regulating ROS and membrane lipid metabolism, HPCD treatment with appropriate pressure could retard the biosynthesis of flavonoids and enzymatic oxidation of phenolic compounds in surface tissue, and enhance antioxidant activity of inner tissue, thereby, delaying the quality deterioration of fresh-cut CWC.


Assuntos
Eleocharis , Espécies Reativas de Oxigênio/metabolismo , Eleocharis/metabolismo , Dióxido de Carbono/metabolismo , Metabolismo dos Lipídeos , Peróxido de Hidrogênio/metabolismo , Antioxidantes/farmacologia , Fenóis/metabolismo , Flavonoides/metabolismo
3.
Chem Rec ; 23(10): e202300119, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37255348

RESUMO

C-H bond functionalization generates molecular complexity in single-step transformation. However, the activation of C-H bonds requires expensive metals or stoichiometric amounts of oxidizing/reducing species. In many cases, they often require pre-functionalization of starting molecules. Such pre-activating measures cause waste generation and their separation from the final product is also troublesome. In such a scenario, reactions activating elements generating from renewable energy resources such as electricity and light would be more efficient, green, and cost-effective. Further, incorporation of growing flow technology in chemical transformation processes will accelerate the safer accesses of valuable products. Arenes & heteroarenes are ubiquitous in pharmaceuticals, natural products, medicinal compounds, and other biologically important molecules. Herein, we discussed enabling tools and technologies used for the recent C-H bonds functionalization of arenes and heteroarenes.

4.
Food Chem X ; 14: 100307, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35492256

RESUMO

The potential mechanism behind the browning inhibition in fresh-cut water chestnuts (FWC) after eugenol (EUG) treatment was investigated by comparing the difference in browning behavior between surface and inner tissues. EUG treatment was found to inactivate browning-related enzymes and reduce phenolic contents in surface tissue. Molecular docking further confirmed the hydrophobic interactions and hydrogen bonding between EUG and phenylalanine ammonia-lyase (PAL). Moreover, EUG also enhanced reactive oxygen species (ROS)-scavenging enzyme activities, ultimately decreasing the O2 - generation rates. Regarding inner tissue, EUG induced the accumulation of colorless phenolic compounds and increased the antioxidant capacity. In conclusion, 1.5 % EUG exhibited the best inhibitory effect on FWC browning, which partly attribute to the direct inhibitory effects on PAL activity. Furthermore, EUG could also enhance the enzymatic/non-enzymatic antioxidant capacity and alleviate the ROS damage to membranes, thereby, preventing the contact between oxidative enzymes and phenols and indirectly inhibiting the enzymatic browning in FWC.

5.
Nutr Res ; 102: 23-34, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35366456

RESUMO

Peppers are a rich source of bioactive compounds with several health benefits. However, most of the knowledge about these benefits has been obtained through in vitro studies, and less is known about their in vivo health-promoting and stress resistance effects. Therefore, we hypothesized that the intake of apigenin glycosides (XAp-G) from Xiaomila green pepper (Capsicum frutescens) could protect against stress factors and promote longevity of Caenorhabditis elegans. Synchronized worms were treated with XAp-G and the lifespan and stress resistance were examined. XAp-G treatment strongly enhanced the average lifespan of worms by 23.9% compared with control by reducing the reactive oxygen species (ROS) level. Ultrahigh performance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectometry analysis showed that Xiaomila pepper (polyamide fraction) contained significant amount of flavone glycosides with m/z 563.14 (apigenin glycosides). Green fluorescent protein fluorescence and real-time polymerase chain reaction analyses showed that XAp-G-treatment could regulate the expression of anti-aging related genes, including daf-2, daf-16, sod-3, hsp-16.2, skn-1, gst-4, gcs-1, jnk-1, and sir-2.1 in C elegans, thereby promoting the translocation of DAF-16 and SKN-1 into the nucleus. However, it could not extend the lifespan of daf-16, skn-1, and sir-2.1 knocked-down mutants. XAp-G treatment significantly reduced ROS under normal and stress conditions (juglone, hydrogen peroxide), and thereby promotes longevity of C elegans via the insulin/insulin-like growth factor-1 signaling pathway.


Assuntos
Proteínas de Caenorhabditis elegans , Capsicum , Animais , Apigenina/farmacologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Glicosídeos/farmacologia , Longevidade , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
6.
Chem Rec ; 22(5): e202100296, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35103382

RESUMO

Syntheses of chemicals using renewable electricity and when generating high atom economies are considered green and sustainable processes. In the present state of affairs, electrochemical manufacturing of fine chemicals and pharmaceuticals is not as common place as it could be and therefore, merits more attention. There is also a need to turn attention toward the electrochemical synthesis of valuable chemicals from recyclable greenhouse gases that can accelerate the process of circular economy. CO2 emissions are the major contributor to human-induced global warming. CO2 conversion into chemicals is a valuable application of its utilisation and will contribute to circular economy while maintaining environmental sustainability. Herein, we present an overview of electro-carboxylation, including mechanistic aspects, which forms carboxylic acids using molecular carbon dioxide. We also discuss atom economies of electrochemical fluorination, methoxylation and amide formation reactions.


Assuntos
Dióxido de Carbono , Eletricidade , Dióxido de Carbono/química , Humanos , Preparações Farmacêuticas
7.
Antioxidants (Basel) ; 10(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34829680

RESUMO

In the present study, the browning degree and reducing power of browning products of catechin (CT), epicatechin (EC), caffeic acid (CA), and chlorogenic acid (CGA) in autoxidation and enzymatic oxidation were investigated. Influencing factors were considered, such as pH, substrate species and composition, and eugenol. Results show that polyphenols' autoxidation was intensified in an alkaline environment, but the reducing power was not improved. Products of enzymatic oxidation at a neutral pH have higher reducing power than autoxidation. In enzymatic oxidation, the browning degree of mixed substrates was higher than that of a single polyphenol. The reducing power of flavonoid mixed solution (CT and EC) was higher than those of phenolic acids' (CA and CGA) in autoxidation and enzymatic oxidation. Eugenol activity studies have shown that eugenol could increase autoxidation browning but inhibit enzymatic browning. Activity test and molecular docking results show that eugenol could inhibit tyrosinase.

8.
Foods ; 9(2)2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102327

RESUMO

In this study, the changes in enzyme activities, total polyphenols, phenolic profile, and physicochemical properties from thermally (25-75 °C) and high-pressure carbon dioxide (HP-CO2) (25-65 °C/20 MPa)-treated apple juice were investigated. The HP-CO2 exhibited complete inactivation of polyphenol oxidase (PPO) at 65 °C, whereas PPO was still active at 75 °C under thermal processing (TP). Similarly, the relative activity of peroxidase (POD) significantly decreased by 71% at 65 °C under HP-CO2 processing, whereas TP was less effective. HP-CO2 and TP treatments at 65 °C reduced the browning degree (BD) value to 0.47 and 0.89, respectively. Thus, HP-CO2 inhibits the browning reactions caused by PPO and POD enzymes at each operating temperature. The concentration of epicatechin and catechin increased significantly with increasing temperature above 45 °C in TP-treated juices. HP-CO2 treatment increased the same phenolic compounds at 35 °C and 9 MPa, whereas high-temperature and -pressure conditions caused insignificant changes in concentration of epicatechin and catechin. Changes in others phenolic compounds were insignificant under TP and HP-CO2 treatment. Overall, HP-CO2 is a promising technology to get high-quality juices with lower enzyme activity.

9.
J Sci Food Agric ; 100(5): 2065-2073, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31875969

RESUMO

BACKGROUND: Polyphenol oxidase (PPO) is considered a problem in the food industry because it starts browning reactions during fruit and vegetable processing. Ultrasonic treatment is a technology used to inactivate the enzyme; however, the mechanism behind PPO inactivation is still unclear. For this reason, the inactivation, aggregation, and structural changes in PPO from quince juice subjected to ultrasonic treatments were investigated. Different intensities and times of ultrasonic treatment were used. Changes in the activity, aggregation, conformation, and structure of PPO were investigated through different structural analyses. RESULTS: Compared to untreated juice, the PPO activity in treated juice was reduced to 35% at a high ultrasonic intensity of 400 W for 20 min. The structure of PPO determined from particle size distribution (PSD) analysis showed that ultrasound treatment caused initial dissociation and subsequent aggregation leading to structural modification. The spectra of circular dichroism (CD) analysis of ultrasonic treated PPO protein showed a significant loss of α-helix, and reorganization of secondary structure. Fluorescence analysis showed a significant increase in fluorescence intensity of PPO after ultrasound treatment with evident blue shift, revealing disruption in the tertiary structure. CONCLUSION: In summary, ultrasonic treatment triggered protein aggregation, distortion of tertiary structure, and loss of α-helix conformation of secondary structure causing inactivation of the PPO enzyme. Hence, ultrasound processing at high intensity and duration could cause the inactivation of the PPO enzyme by inducing aggregation and structural modifications. © 2019 Society of Chemical Industry.


Assuntos
Catecol Oxidase/metabolismo , Sucos de Frutas e Vegetais/análise , Ultrassom , Catecol Oxidase/antagonistas & inibidores , Fenômenos Químicos , Dicroísmo Circular , Cor , Manipulação de Alimentos , Frutas/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Reação de Maillard , Tamanho da Partícula , Proteínas de Plantas/metabolismo , Estrutura Secundária de Proteína , Rosaceae/química , Verduras/química
10.
Molecules ; 24(10)2019 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-31109085

RESUMO

Apart from non-enzymatic browning, polyphenol oxidase (PPO) also plays a role in the browning reaction of orange (Citrus sinensis Osbeck) juice, and needs to be inactivated during the processing. In this study, the protein with high PPO activity was purified from orange (Citrus sinensis Osbeck) and inactivated by ultrasonic processing. Fluorescence spectroscopy, circular dichroism (CD) and Dynamic light scattering (DLS) were used to investigate the ultrasonic effect on PPO activity and structural changes on purified PPO. DLS analysis illustrated that ultrasonic processing leads to initial dissociation and final aggregation of the protein. Fluorescence spectroscopy analysis showed the decrease in fluorescence intensity leading to the exposure of Trp residues to the polar environment, thereby causing the disruption of the tertiary structure after ultrasonic processing. Loss of α-helix conformation leading to the reorganization of secondary structure was triggered after the ultrasonic processing, according to CD analysis. Ultrasonic processing could induce aggregation and modification in the tertiary and secondary structure of a protein containing high PPO activity in orange (Citrus sinensis Osbeck), thereby causing inactivation of the enzyme.


Assuntos
Catecol Oxidase/química , Citrus sinensis/química , Proteínas de Plantas/química , Conformação Proteica/efeitos da radiação , Ondas Ultrassônicas , Catecol Oxidase/isolamento & purificação , Catecol Oxidase/metabolismo , Dicroísmo Circular , Citrus sinensis/enzimologia , Ativação Enzimática , Reação de Maillard , Peso Molecular , Tamanho da Partícula , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Análise Espectral
11.
Front Chem ; 6: 354, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30191148

RESUMO

Polyphenol oxidase (PPO) in plants plays an important role in browning reactions and may affect the quality of sweet melon products. In this study, a browning-related protein (BRP) with PPO activity was partially purified from oriental sweet melon (Cucumis melo var. makuwa Makino) by salt precipitation and column chromatography. The BRP possessed a high degree of identity with several chitinase proteins, particularly defense-related proteins, by MS identification. Pyrogallol was determined as the most appropriate substrate for BRP (Km = 0.04278 M). BRP exhibited extreme resistance under alkaline and high temperature conditions when pyrogallol was used as substrate. Polyacrylamide gel electrophoresis (PAGE) analysis indicated that BRP was a homo-dimer of two subunits and had a molecular weight of 37 kDa. Structural analysis indicated that the α-helix was the dominant conformation of BRP. The active site of the protein might be buried deeply in the protein, and BRP might be monodispersed in an aqueous system.

12.
Molecules ; 23(7)2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018206

RESUMO

Polyphenol oxidase (PPO) causes the browning reaction in fruits and vegetables and deteriorates the quality. Thermal treatment for enzyme inactivation may result in defects as opposed to high pressure CO2 (HPCD) processing. In this study, the changes in activity, dissociation, aggregation and conformation of purified PPO from thermal and HPCD treated juice were investigated. HPCD exhibited inactivation of PPO at 55⁻65 °C whereas thermal processing alone at the same temperature resulted in PPO still showing activity. Under thermal treatment at 25 and 65 °C, the browning degree was higher (0.39 and 0.24) than for HPCD-treated juice (0.23 and 0.12). Fluorescence and circular dichroism spectral results indicated that HPCD induced large decreases in intensities, revealing a rearrangement of the secondary structure and destruction of the native configuration of the PPO molecule. The particle size distribution (PSD) pattern revealed structural modification leading to initial dissociation and subsequent aggregation of PPO after HPCD treatment. Polyacrylamide gel electrophoresis (PAGE) analysis exhibited that molecular size of protein was 40 kDa. In conclusion, the HPCD method was found to be more effective than thermal treatment to inactivate PPO. Structural modifications provided better insights into the phenomena of activation and inactivation of PPO.


Assuntos
Dióxido de Carbono/química , Catecol Oxidase/química , Sucos de Frutas e Vegetais , Temperatura Alta , Proteínas de Plantas/química , Rosaceae/enzimologia , Estabilidade Enzimática
13.
Front Chem ; 6: 203, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922647

RESUMO

This study investigated the effects of heat treatment after purification on dissociation, aggregation, and structural modification of polyphenol oxidase (PPO) activity from apple (Malus domestica) juice. PPO activity at the 70°C for 10 min was still activated and drastically decreased since 20-60 min with catechol and pyrogallol as substrate. Moreover, spectral results of fluorescence and circular dichroism (CD) indicated that increasing temperature for shorter and longer durations can cause reorganization of the secondary structure of PPO and demolished the native configuration of PPO respectively. Compared with native PPO, all thermally treated PPO showed reduced activity with gradually increasing particle size shift toward section III of some fully assembled proteins treated at 70°C for 10 min (2,670 nm). Polyacrylamide gel electrophoresis (PAGE) analysis also exhibited the increase in protein content at the 70°C for 10 min with molecular size 35 kDa (7.7 ± 0.016c). Hence, thermally treated juice subjected to purification at high temperature for a short time could induce the aggregation of protein and is not really effective for PPO inactivation. For PPO, higher degree of long duration can induce the inactivation of the enzyme after processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA