Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (170)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33938896

RESUMO

Many bacterial species cannot be cultured in the laboratory using standard methods, posing a significant barrier to studying the majority of microbial diversity on earth. Novel approaches are required to culture these uncultured bacteria so that investigators can effectively study their physiology and lifestyle using the powerful tools available in the laboratory. The Candidate Phyla Radiation (CPR) is one of the largest groups of uncultivated bacteria, comprising ~15% of the living diversity on earth. The first isolate of this group was a member of the Saccharibacteria phylum, 'Nanosynbacter lyticus' strain TM7x. TM7x is an unusually small bacterium that lives as a symbiont in direct contact with a bacterial host, Schaalia odontolytica, strain XH001. Taking advantage of the unusually small cell size and its lifestyle as a symbiotic organism, we developed a protocol to rapidly culture Saccharibacteria from dental plaque. This protocol will show how to filter a suspension of dental plaque through a 0.2 µm filter, then concentrate the collected Saccharibacteria cells and infect a culture of host organisms. The resulting coculture can be passaged as any normal bacterial culture and infection is confirmed by PCR. The resulting binary culture can be maintained in the laboratory and used for future experiments. While contamination is a possibility, the binary culture can be purified by either further filtering and reinfection of host, or by plating the binary culture and screening for infected colonies. We hope this protocol can be expanded to other sample types and environments, leading to the cultivation of many more species in the CPR.


Assuntos
Acetobacteraceae/patogenicidade , Bactérias/patogenicidade , Boca/microbiologia , Simbiose
2.
Lancet Microbe ; 2(6): e259-e266, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33821247

RESUMO

BACKGROUND: Faecal shedding of SARS-CoV-2 has raised concerns about transmission through faecal microbiota transplantation procedures. Validation parameters of authorised tests for SARS-CoV-2 RNA detection in respiratory samples are described in product labelling, whereas the published methods for SARS-CoV-2 detection from faecal samples have not permitted a robust description of the assay parameters. We aimed to develop and validate a test specifically for detection of SARS-CoV-2 in human stool. METHODS: In this validation study, we evaluated performance characteristics of a reverse transcriptase real-time PCR (RT-rtPCR) test for detection of SARS-CoV-2 in human stool specimens by spiking stool with inactivated SARS-CoV-2 material. A modified version of the US Centers for Disease Control and Prevention RT-rtPCR SARS-CoV-2 test was used for detection of viral RNA. Analytical sensitivity was evaluated in freshly spiked stool by testing two-fold dilutions in replicates of 20. Masked samples were tested by a second laboratory to evaluate interlaboratory reproducibility. Short-term (7-day) stability of viral RNA in stool samples was assessed with four different stool storage buffers (phosphate-buffered saline, Cary-Blair medium, Stool Transport and Recovery [STAR] buffer, and DNA/RNA Shield) kept at -80°C, 4°C, and ambient temperature (approximately 21°C). We also tested clinical stool and anal swab specimens from patients who were SARS-CoV-2 positive by nasopharyngeal testing. FINDINGS: The lower limit of detection of the assay was found to be 3000 viral RNA copies per g of original stool sample, with 100% detection across 20 replicates assessed at this concentration. Analytical sensitivity was diminished by approximately two times after a single freeze-thaw cycle at -80°C. At 100 times the limit of detection, spiked samples were generally stable in all four stool storage buffers tested for up to 7 days, with maximum changes in mean threshold cycle values observed at -80°C storage in Cary-Blair medium (from 29·4 [SD 0·27] at baseline to 30·8 [0·17] at day 7; p<0·0001), at 4°C storage in DNA/RNA Shield (from 28·5 [0·15] to 29·8 [0·09]; p=0·0019), and at ambient temperature in STAR buffer (from 30·4 [0·24] to 32·4 [0·62]; p=0·0083). 30 contrived SARS-CoV-2 samples were tested by a second laboratory and were correctly identified as positive or negative in at least one of two rounds of testing. Additionally, SARS-CoV-2 RNA was detected using this assay in the stool and anal swab specimens of 11 of 23 individuals known to be positive for SARS-CoV-2. INTERPRETATION: This is a sensitive and reproducible assay for detection of SARS-CoV-2 RNA in human stool, with potential uses in faecal microbiota transplantation donor screening, sewage monitoring, and further research into the effects of faecal shedding on the epidemiology of the COVID-19 pandemic. FUNDING: National Institute of Allergy and Infectious Diseases, US National Institutes of Health; Center for Biologics Evaluation and Research, US Food and Drug Administration.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Pandemias , RNA Viral/genética , Reprodutibilidade dos Testes , SARS-CoV-2/genética
3.
J Oral Microbiol ; 12(1): 1814666, 2020 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-33209205

RESUMO

BACKGROUND: The vast majority of bacteria on earth have not yet been cultivated. There are many bacterial phyla with no cultivated examples including most members of the Candidate Phylum Radiation with the exception of human oral isolates from the phylum Saccharibacteria. AIMS: The aims of this research were to develop reproducible methods and validate approaches for the cultivation of human oral Saccharibacteria and to identify the conceptual pitfalls that delayed isolation of these bacteria for 20 years after their discovery. METHODS: Oral samples were dispersed and passed through 0.2 µm membrane filters. The ultrasmall saccharibacterial cells in the filtrate were pelleted, inoculated into broth cultures of potential bacterial host cells and passaged into fresh medium every 2-3 days. RESULTS: Thirty-two isolates representing four species of Saccharibacteria were isolated in stable coculture with three species of host bacteria from the phylum Actinobacteria. Complete genome sequences were obtained for 16 isolates. CONCLUSIONS: Human oral Saccharibacteria are obligate bacterial parasites that can be stably passaged in coculture with specific species of host bacteria. Isolating these important members of the human oral microbiome, and many natural environments, requires abandoning many of Koch's concepts and methods and embracing novel microbiological approaches.

4.
Microbiol Resour Announc ; 8(42)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624156

RESUMO

Strain AC001 is a cultured representative of human microbial taxon 488, a bacterium from the candidate phylum Saccharibacteria It is an obligate parasite with a genome of <0.9 Mb and grows in coculture with its host, Pseudopropionibacterium propionicum The complete genome sequence is presented here.

5.
Microbiol Resour Announc ; 8(42)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624157

RESUMO

Strain PM004 is a cultured representative of human microbial taxon 955, a bacterium from the phylum Saccharibacteria It is an obligate parasite with a genome of <0.9 Mb and can be grown in coculture with its host, Pseudopropionibacterium propionicum The complete genome sequence is presented here.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA