Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
J Comput Chem ; 24(5): 657-67, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12632481

RESUMO

We present a new implementation of the program nMoldyn, which has been developed for the computation and decomposition of neutron scattering intensities from Molecular Dynamics trajectories (Comp. Phys. Commun 1995, 91, 191-214). The new implementation extends the functionality of the original version, provides a much more convenient user interface (both graphical/interactive and batch), and can be used as a tool set for implementing new analysis modules. This was made possible by the use of a high-level language, Python, and of modern object-oriented programming techniques. The quantities that can be calculated by nMoldyn are the mean-square displacement, the velocity autocorrelation function as well as its Fourier transform (the density of states) and its memory function, the angular velocity autocorrelation function and its Fourier transform, the reorientational correlation function, and several functions specific to neutron scattering: the coherent and incoherent intermediate scattering functions with their Fourier transforms, the memory function of the coherent scattering function, and the elastic incoherent structure factor. The possibility to compute memory function is a new and powerful feature that allows to relate simulation results to theoretical studies.

3.
Biophys J ; 81(1): 170-83, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11423404

RESUMO

Molecular dynamics (MD) simulations of fully hydrated bilayers in the liquid-crystalline state made of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) or 1-palmitoyl-2-elaidoyl-phosphatidylcholine (PEPC) were carried out to investigate the effect of the incorporation of a double bond in the phosphatidylcholine (PC) beta-chain (cis or trans) on the membrane/water interface. The bilayers reached thermal equilibrium after 3 and 1 ns of MD simulations, respectively, and productive runs were carried out for 3 ns for each bilayer. As reference systems, the 1,2-dimyristoyl-phosphatidylcholine (DMPC) bilayer (M. Pasenkiewicz-Gierula, Y. Takaoka, H. Miyagawa, K. Kitamura, and A. Kusumi, 1999, Biophys. J. 76:1228-1240) and DMPC-cholesterol (Chol) bilayer containing 22 mol % Chol (M. Pasenkiewicz-Gierula, T. Róg, K. Kitamura, A. and Kusumi, 2000, Biophys. J. 78:1376-1389) were used. The study shows that at the interface of POPC, PEPC, and DMPC-Chol bilayers, average numbers of PC-water and PC-PC interactions are similar and, respectively, greater and smaller than in the DMPC bilayer. The average area/PC in mono-unsaturated bilayers is approximately 4 A(2) larger than in the DMPC bilayer; nevertheless, a strong correlation was found between a single molecular area (SMA) of a PC and the number of interactions this PC makes; i.e., PCs (either saturated or unsaturated) with the same SMA form similar numbers of intermolecular links. The numbers and corresponding SMAs are distributed about averages pertinent to each bilayer. No significant difference between cis and trans bonds was found.


Assuntos
Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Água/metabolismo , Sítios de Ligação , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Ligação de Hidrogênio , Ácido Oleico/química , Ácido Oleico/metabolismo , Ácidos Oleicos , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Eletricidade Estática
4.
Acta Biochim Pol ; 47(3): 601-11, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11310963

RESUMO

The main structural element of biological membranes is a liquid-crystalline lipid bilayer. Other constituents, i.e. proteins, sterols and peptides, either intercalate into or loosely attach to the bilayer. We applied a molecular dynamics simulation method to study membrane systems at various levels of compositional complexity. The studies were started from simple lipid bilayers containing a single type phosphatidylcholine (PC) and water molecules (PC bilayers). As a next step, cholesterol (Chol) molecules were introduced to the PC bilayers (PC-Chol bilayers). These studies provided detailed information about the structure and dynamics of the membrane/water interface and the hydrocarbon chain region in bilayers built of various types of PCs and Chol. This enabled studies of membrane systems of higher complexity. They included the investigation of an integral membrane protein in its natural environment of a PC bilayer, and the antibacterial activity of magainin-2. The latter study required the construction of a model bacterial membrane which consisted of two types of phospholipids and counter ions. Whenever published experimental data were available, the results of the simulations were compared with them.


Assuntos
Bicamadas Lipídicas/química , Proteínas de Xenopus , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/química , Bactérias/efeitos dos fármacos , Colesterol/química , Técnicas In Vitro , Magaininas , Proteínas de Membrana/química , Modelos Moleculares , Fosfatidilcolinas/química , Termodinâmica , Água/química
5.
Acta Biochim Pol ; 46(3): 631-9, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10698271

RESUMO

The main steps in the construction of a computer model for a bacterial membrane are described. The membrane has been built of 72 lipid molecules, 54 of which being 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphatidylethanolamine (POPE) and 18--1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphatidyl-rac-glycerol (POPG) molecules (thus in the proportion of 3:1). The membrane was hydrated with 1955 water molecules (approximately 27 water molecules per lipid). To neutralise the electronic charge (-e) on each POPG molecule, 18 sodium ions (Na+) were added to the membrane close to the POPG phosphate groups. The atomic charges on the POPE and POPG headgroups were obtained from ab initio quantum mechanical restrained electrostatic potential fitting (RESP) (Bayly et al., 1993, J. Phys. Chem. 97, 10269) using the GAMESS program at the 6-31G* level (Schmidt et al., 1993, J. Comput. Chem. 14, 1347). The model constructed in this way provided an initial structure for subsequent molecular dynamics simulation studies intended to elucidate the atomic level interactions responsible for the structure and dynamics of the bacterial membrane.


Assuntos
Bactérias/química , Simulação por Computador , Lipídeos de Membrana/química , Modelos Moleculares , Conformação Molecular , Fosfatidiletanolaminas/química , Fosfatidilgliceróis/química , Eletricidade Estática , Termodinâmica , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA