Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
In Silico Pharmacol ; 12(2): 75, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39155972

RESUMO

Plant-derived phytochemicals from medicinal plants are becoming increasingly attractive natural sources of antimicrobial and antiviral agents due to their therapeutic value, mechanism of action, level of toxicity and bioavailability. The continued emergence of more immune-evasive strains and the rate of resistance to current antiviral drugs have created a need to identify new antiviral agents against SARS-CoV-2. This study investigated the antiviral potential of balsaminol, a bioactive compound from Momordica balsamina, and its inhibitory activities against SARS-CoV-2 receptor proteins. In this study, three Food and Drug Administration (FDA) COVID-19 approved drugs namely; nirmatrelvir, ritonavir and remdesivir were used as positive control. Molecular docking was performed to determine the predominant binding mode (most negative Gibbs free energy of binding/ΔG) and inhibitory activity of balsaminol against SARS-CoV-2 receptor proteins. The pharmacokinetics, toxicity, physicochemical and drug-like properties of balsaminol were evaluated to determine its potential as an active oral drug candidate as well as its non-toxicity in humans. The results show that balsaminol E has the highest binding affinity to the SARS CoV-2 papain-like protease (7CMD) with a free binding energy of - 8.7 kcal/mol, followed by balsaminol A interacting with the spike receptor binding domain (6VW1) with - 8.5 kcal/mol and balsaminol C had a binding energy of - 8.1 kcal/mol with the main protease (6LU7) comparable to the standard drugs namely ritonavir, nirmatrelvir and remdesivir. However, the ADMET and drug-like profile of balsaminol F favours it as a better potential drug candidate and inhibitor of the docked SARS-CoV-2 receptor proteins. Further preclinical studies are therefore recommended. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-024-00241-0.

2.
Lancet Infect Dis ; 19(8): 872-879, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285143

RESUMO

BACKGROUND: In September, 2017, human monkeypox re-emerged in Nigeria, 39 years after the last reported case. We aimed to describe the clinical and epidemiological features of the 2017-18 human monkeypox outbreak in Nigeria. METHODS: We reviewed the epidemiological and clinical characteristics of cases of human monkeypox that occurred between Sept 22, 2017, and Sept 16, 2018. Data were collected with a standardised case investigation form, with a case definition of human monkeypox that was based on previously established guidelines. Diagnosis was confirmed by viral identification with real-time PCR and by detection of positive anti-orthopoxvirus IgM antibodies. Whole-genome sequencing was done for seven cases. Haplotype analysis results, genetic distance data, and epidemiological data were used to infer a likely series of events for potential human-to-human transmission of the west African clade of monkeypox virus. FINDINGS: 122 confirmed or probable cases of human monkeypox were recorded in 17 states, including seven deaths (case fatality rate 6%). People infected with monkeypox virus were aged between 2 days and 50 years (median 29 years [IQR 14]), and 84 (69%) were male. All 122 patients had vesiculopustular rash, and fever, pruritus, headache, and lymphadenopathy were also common. The rash affected all parts of the body, with the face being most affected. The distribution of cases and contacts suggested both primary zoonotic and secondary human-to-human transmission. Two cases of health-care-associated infection were recorded. Genomic analysis suggested multiple introductions of the virus and a single introduction along with human-to-human transmission in a prison facility. INTERPRETATION: This study describes the largest documented human outbreak of the west African clade of the monkeypox virus. Our results suggest endemicity of monkeypox virus in Nigeria, with some evidence of human-to-human transmission. Further studies are necessary to explore animal reservoirs and risk factors for transmission of the virus in Nigeria. FUNDING: None.


Assuntos
Surtos de Doenças , Monkeypox virus/genética , Mpox/diagnóstico , Mpox/epidemiologia , Adulto , Animais , Exantema/etiologia , Feminino , Febre/etiologia , Humanos , Masculino , Monkeypox virus/isolamento & purificação , Nigéria/epidemiologia , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA