Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 348: 123745, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38499169

RESUMO

The article discusses the removal of methylene blue (MB) dye, a common cationic dye used in the textile industry, from aqueous solutions through an adsorption process. The use of porous components as adsorbents are shown to facilitate complete separation after the process is completed. The substrate was synthesized by connecting zinc copper ferrite (ZnCuFe2O4), polyethyleneimine (PEI), and Graphene Oxide (GO) sheets to MCM-48, which is a mesoporous material. The surface of MCM-48 was modified using CPTMS, which created an O-Si-Cl bridge, thereby improving the adsorption rate. The substrate was shown to have suitable sites for electrostatic interactions and creating hydrogen bonds with MB. The adsorption process from the Freundlich isotherm (R2 = 0.9224) and the pseudo-second-order diagram (R2 = 0.9927) demonstrates the adsorption of several layers of dye on the heterogeneous surface of the substrate. The synthesized substrate was also shown to have good bactericidal activity against E. coli and S. aureus bacterial strain. Furthermore, the substrate maintained its initial ability to adsorb MB dye for four consecutive cycles. The research resulted that ZnCuFe2O4@MCM-48/PEI-GO substrate has the potential for efficient and economical removal of MB dye from aqueous solutions (R = 88.82%) (qmax = 294.1176 mg. g-1), making it a promising solution for the disposal of harmful industrial waste.


Assuntos
Compostos Férricos , Grafite , Nanopartículas , Poluentes Químicos da Água , Purificação da Água , Dióxido de Silício , Polietilenoimina , Cobre , Zinco , Escherichia coli , Porosidade , Staphylococcus aureus , Antibacterianos/farmacologia , Azul de Metileno/química , Purificação da Água/métodos , Adsorção , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
2.
J Biomol Struct Dyn ; 42(7): 3295-3306, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37279114

RESUMO

MCM7 (Minichromosome Maintenance Complex Component 7) is a component of the DNA replication licensing factor, which controls DNA replication. The MCM7 protein is linked to tumor cell proliferation and has a function in the development of several human cancers. Several types of cancer may be treated by inhibiting the protein, as it is strongly produced throughout this process. Significantly, Traditional Chinese Medicine (TCM), which has a long history of clinical adjuvant use against cancer, is rapidly gaining traction as a valuable medical resource for the development of novel cancer therapies, including immunotherapy. Therefore, the goal of the research was to find small molecular therapeutic candidates against the MCM7 protein that may be used to treat human cancers. A computational-based virtual screening of 36,000 natural TCM libraries is carried out for this goal using a molecular docking and dynamic simulation technique. Thereby, ∼8 novel potent compounds i.e., ZINC85542762, ZINC95911541, ZINC85542617, ZINC85542646, ZINC85592446, ZINC85568676, ZINC85531303, and ZINC95914464 were successfully shortlisted, each having the capacity to penetrate the cell as potent inhibitors for MCM7 to curb this disorder. These selected compounds were found to have high binding affinities compared to the reference (AGS compound) i.e. < -11.0 kcal/mol. ADMET and pharmacological properties showed that none of these 8 compounds poses any toxic property (carcinogenicity) and have anti-metastatic, and anticancer activity. Additionally, MD simulations were run to assess the compounds' stability and dynamic behavior with the MCM7 complex for about 100 ns. Finally, ZINC95914464, ZINC95911541, ZINC85568676, ZINC85592446, ZINC85531303, and ZINC85542646 are identified as highly stable within the complex throughout the 100 ns simulations. Moreover, the results of binding free energy suggested that the selected virtual hits significantly bind to the MCM7 which implied these compounds may act as a potential MCM7 inhibitor. However, in vitro testing protocols are required to further support these results. Further, assessment through various lab-based trial methods can assist with deciding the action of the compound that will give options in contrast to human cancer immunotherapy.Communicated by Ramaswamy H. Sarma.


Assuntos
Medicina Tradicional Chinesa , Neoplasias , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas de Ciclo Celular , Proliferação de Células , Neoplasias/tratamento farmacológico
3.
Nanoscale Adv ; 5(22): 6177-6193, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37941952

RESUMO

We designed and prepared a novel N-heterocycle-based nanocatalyst by a post synthetic method, namely the [Fe3O4@DAA-BTrzPhen-Cu(ii)] composite. In this method, bistriazolyl-phenanthroline groups were stepwise synthesized on an Fe3O4 substrate and used as a tetradentate nitrogenous ligand for coordinating to copper ions. The obtained nanocomposite was well characterized using FT-IR, PXRD, TGA, EDAX, ICP-OES, EDX-mapping, SEM, TEM, VSM and BET analyses, which confirm the formation of a thermostable crystalline spherical particle morphology with the particle size in the range of 17 nm to 25 nm and a magnetization value of 42 emu g-1. Also, the catalytic activity of [Fe3O4@DAA-BTrzPhen-Cu(ii)] as a novel and magnetically separable heterogeneous nanocatalyst was evaluated in preparing various tetrasubstituted imidazole derivatives from one-pot four-component condensation of anilines, aldehydes, 1,2-diketones and ammonium acetate, and favorable products were produced with excellent yields. The stability, low Cu leaching, and heterogenous nature of the nanocatalyst were confirmed by hot-filtration and leaching tests. The copper based nanocatalyst could be easily recovered by magnetic field separation and recycled at least 8 times in a row without noticeable loss in its catalytic activity.

4.
Front Oncol ; 13: 1259034, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033495

RESUMO

Macrophages represent an important component of the innate immune system. Under physiological conditions, macrophages, which are essential phagocytes, maintain a proinflammatory response and repair damaged tissue. However, these processes are often impaired upon tumorigenesis, in which tumor-associated macrophages (TAMs) protect and support the growth, proliferation, and invasion of tumor cells and promote suppression of antitumor immunity. TAM abundance is closely associated with poor outcome of cancer, with impediment of chemotherapy effectiveness and ultimately a dismal therapy response and inferior overall survival. Thus, cross-talk between cancer cells and TAMs is an important target for immune checkpoint therapies and metabolic interventions, spurring interest in it as a therapeutic vulnerability for both hematological cancers and solid tumors. Furthermore, targeting of this cross-talk has emerged as a promising strategy for cancer treatment with the antibody against CD47 protein, a critical macrophage checkpoint recognized as the "don't eat me" signal, as well as other metabolism-focused strategies. Therapies targeting CD47 constitute an important milestone in the advancement of anticancer research and have had promising effects on not only phagocytosis activation but also innate and adaptive immune system activation, effectively counteracting tumor cells' evasion of therapy as shown in the context of myeloid cancers. Targeting of CD47 signaling is only one of several possibilities to reverse the immunosuppressive and tumor-protective tumor environment with the aim of enhancing the antitumor response. Several preclinical studies identified signaling pathways that regulate the recruitment, polarization, or metabolism of TAMs. In this review, we summarize the current understanding of the role of macrophages in cancer progression and the mechanisms by which they communicate with tumor cells. Additionally, we dissect various therapeutic strategies developed to target macrophage-tumor cell cross-talk, including modulation of macrophage polarization, blockade of signaling pathways, and disruption of physical interactions between leukemia cells and macrophages. Finally, we highlight the challenges associated with tumor hypoxia and acidosis as barriers to effective cancer therapy and discuss opportunities for future research in this field.

5.
Neuroscience ; 527: 52-63, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37499782

RESUMO

Spinal cord injury (SCI) following trauma is a devastating neurological event that can lead to loss of sensory and motor functions. However, the most effective measures to prevent the spread of damage are treatment measures in the early stages. Currently, we investigated the combined effects of hyperbaric oxygen (HBO) along with epigallocatechin-3-gallate (EGCG) in the recovery of SCI in rats. Ninety male mature Sprague-Dawley rats were randomly planned into five equal groups (n = 18). In addition to sham group that only underwent laminectomy, SCI rats were allocated into 4 groups as follows: control group; HBO group; EGCG group; and HBO + EGCG group. Tissue samples at the lesion site were obtained for stereological, immunohistochemical, biochemical, and molecular evaluation. In addition, behavioral tests were performed to assess of neurological functions. The finding indicated that the stereological parameters, antioxidant factors (CAT, GSH, and SOD), IL-10 gene expression levels and neurological functions were considerably increased in the treatment groups in comparison with control group, and these changes were more obvious in the HBO + EGCG group (P < 0.05). On the other hand, we observed that the density of apoptotic cells and gliosis, the biochemical levels of MDA and the expression levels of inflammatory genes (TNF-α and IL-1ß) in the treatment groups, especially the HBO + EGCG group, were considerably reduced in comparison with control group (P < 0.05). We conclude that co-administration of HBO and EGCG has a synergistic neuroprotective effects in animals undergoing SCI.


Assuntos
Oxigenoterapia Hiperbárica , Traumatismos da Medula Espinal , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Oxigênio/metabolismo
6.
Crit Rev Anal Chem ; : 1-17, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37307199

RESUMO

Mycotoxin pollution in agricultural food products endangers animal and human health during the supply chains, therefore the development of accurate and rapid techniques for the determination of mycotoxins is of great importance for food safety guarantee. MXenes-based nanoprobes have attracted enormous attention as a complementary analysis and promising alternative strategies to conventional diagnostic methods, because of their fascinating features, like high electrical conductivity, various surface functional groups, high surface area, superb thermal resistance, good hydrophilicity, and environmentally-friendlier characteristics. In this study, we outline the state-of-the-art research on MXenes-based probes in detecting various mycotoxins like aflatoxin, ochratoxin, deoxynivalenol, zearalenone, and other toxins as a most commonly founded mycotoxin in the agri-food supply chain. First, we present the diverse synthesis approaches and exceptional characteristics of MXenes. Afterward, based on the detecting mechanism, we divide the biosensing utilizations of MXenes into two subcategories: electrochemical, and optical biosensors. Then their performance in effective sensing of mycotoxins is comprehensively deliberated. Finally, present challenges and prospective opportunities for MXenes are debated.

7.
Environ Res ; 231(Pt 1): 116086, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37169141

RESUMO

Water pollution due to organic waste and various microorganisms cause severe health problems. Numbers of techniques are used to eliminate organic waste and microorganisms from water because water pollution is a substantial issue in the current era. In the present study, sustainable and effective CuO/SnO2@g-C3N4 nanocomposites were prepared via green and chemical approach. The photo degradation of ciprofloxacin (CIP) and methylene blue (MB) by the green synthesized nanocomposite were tested. Visible and dark conditions both were used to conduct this test. The results showed that the nanocomposite is much more effective in light than in dark conditions. The synthesized nanocomposite was also tested both in light and dark against highly drug resistant microorganisms' Bacillus subtilis (B.subtilis) and Escherichia coli (E.coli). As a result, the antibacterial evaluation revealed substantial antibacterial activity in the presence of light, with a zone of inhibition covering an area of 19 (±0.5) mm and 20 (±0.1) mm, respectively, against gram negative and gram positive bacteria such as E. coli and B. subtilis. The results showed that the CuO/SnO2@g-C3N4 nanocomposite is a stable, eco-friendly photocatalyst with significant resistance to CIP and MB degradation and a substantial inhibitory effect towards microorganisms in visible light.


Assuntos
Ciprofloxacina , Nanocompostos , Ciprofloxacina/farmacologia , Azul de Metileno/farmacologia , Azul de Metileno/química , Espécies Reativas de Oxigênio , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Nanocompostos/química , Catálise
8.
Environ Res ; 231(Pt 1): 116093, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37178753

RESUMO

Purified water is the most concerning issue these days, and utmost conventional practices are allied with various downsides. Therefore, an ecologically benign and easily amicable therapeutic approach is the requirement. In this wonder, nanometer phenomena bring an innovative change to the material world. It has the potential to produce nanosized materials for wide-ranging applications. The subsequent research highlights the synthesis of Ag/Mn-ZnO nanomaterial via a one-pot hydrothermal route with an efficient photocatalytic activity against organic dyes and bacteria. The outcomes revealed that the size of the particle (4-5 nm) and dispersion of spherically shaped silver nanoparticles intensely affected by employing Mn-ZnO as a support material. Use of silver NPs as a dopant activates the active sites of the support medium and provides a higher surface area to upsurge the degradation rate. The synthesized nanomaterial was evaluated against photocatalytic activity using Methyl orange and alizarin red as model dyes and confided that more than 70% of both the dyes degraded under 100 min duration. It is well recognize that the modified nanomaterial recreates an essential role in every light-based reaction, and virtually produced highly reactive oxygen species. The synthesized nanomaterial was also evaluated against E. coli bacterium both in light and dark. The zone of inhibition in the presence of Ag/Mn-ZnO was observed both in light (18 ± 0.2 mm) and dark (12 ± 0.4 mm). The hemolytic activity shows that Ag/Mn-ZnO has very low toxicity. Hence, the prepared Ag/Mn-ZnO nanomaterial might be an effective tool against the depletion of further harmful environmental pollutants and microbes.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Óxido de Zinco , Fotólise , Óxido de Zinco/toxicidade , Óxido de Zinco/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Prata/toxicidade , Prata/química , Escherichia coli , Nanoestruturas/toxicidade , Nanoestruturas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA