Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Indian J Microbiol ; 64(2): 328-342, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39010986

RESUMO

Potential of salivary microbiota as a non-invasive diagnostic tool for various diseases are explained in the present review. Traditional diagnostic methods rely on blood, which has limitations in terms of collection and biomarker specificity. We discuss the concept of normal flora and how disruptions in oral microbiota can be indicative of diseases. Saliva, harboring a diverse microbial community, offers promise as a diagnostic biomarker source for oral and non-oral conditions. We delve into the role of microbial dysbiosis in disease pathogenesis and the prospects of using biological indicators like dysbiosis for diagnosis, prediction, and monitoring. This review also emphasizes the significance of saliva microbiota in advancing early disease detection and timely intervention. We addressed the following research question and objectives: Can the microbiota of saliva serve as a non-invasive diagnostic tool for the early detection and monitoring of both oral and non-oral diseases? To achieve this, we will explore the normal flora of microorganisms in the oral cavity, the impact of microbial dysbiosis, and the potential of using specific pathogenic microorganisms as biomarkers. Additionally, we will investigate the correlation between oral and non-oral diseases by analyzing total saliva or site-specific dental biofilms for signs of symbiosis or dysbiosis. This research seeks to contribute valuable insights into the development of a non-invasive diagnostic approach with broad applications in healthcare.

2.
Heliyon ; 10(10): e29064, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813204

RESUMO

Almost all biological processes in the human body are regulated by circadian rhythm, which results in drastically different biochemical and physiological conditions throughout a 24 h period. Hence, suitable drug delivery systems should be efficiently monitored to attain the required therapeutic plasma concentration and therapeutic drug responses when needed as per chrono pharmacological concepts. "Chronotherapy" is the fast and transient release of a particular quantity of drug substance post a predetermined off-release period, termed as 'lag time'. Due to rhythmic variations, it is typically unnecessary to administer a medicine drug in an unhealthy condition constantly. Pulsatile drug delivery systems have received a lot of attention in pharmaceutical development because they give a quick or rate-controlled drug release after administration, followed by an anticipated lag period. Patients with various illnesses, such as asthma, hypertension, joint inflammation, and ulcers, can benefit from a pulsatile drug delivery system. Thus, a pulsatile drug delivery system may be a potential system for managing different diseases. This review mainly focuses on pulsatile drug delivery systems. It reviews and discusses the rationale, drug release mechanism, need, and system classification. In addition, it covers mainly externally regulated pulsatile drug delivery systems and recent advances in pulsatile systems like artificial intelligence and 3D printing. It also covers the ethical issues associated with pulsatile drug delivery systems.

3.
Pharmaceutics ; 15(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36839910

RESUMO

Eudragit, synthesized by radical polymerization, is used for enteric coating, precise temporal release, and targeting the entire gastrointestinal system. Evonik Healthcare Germany offers different grades of Eudragit. The ratio of methacrylic acid to its methacrylate-based monomers used in the polymerization reaction defines the final product's characteristics and consequently its potential range of applications. Since 1953, these polymers have been made to use in a wide range of healthcare applications around the world. In this review, we reviewed the "known of knowns and known of unknowns" about Eudragit, from molecule to material design, its characterization, and its applications in healthcare.

4.
Nanomaterials (Basel) ; 12(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36364675

RESUMO

Nanocarriers are gaining significant importance in the modern era of drug delivery. Nanofiber technology is one of the prime paradigms in nanotechnology for various biomedical and theranostic applications. Nanofibers obtained after successful electrospinning subjected to surface functionalized for drug delivery, biomedical, tissue engineering, biosensing, cell imaging and wound dressing application. Surface functionalization entirely changes physicochemical and biological properties of nanofibers. In physicochemical properties, wettability, melting point, glass transition temperature, and initial decomposition temperature significantly change offer several advantageous for nanofibers. Similarly, biological properties include cell adhesion, biocompatibility, and proliferation, also changes by functionalization of nanofibers. Various natural and synthetic materials polymers, metals, carbon materials, functional groups, proteins, and peptides, are currently used for surface modification of nanofibers. Various research studies across the globe demonstrated the usefulness of surface functionalized nanofibers in tissue engineering, wound healing, skin cancers, melanoma, and disease diagnosis. The delivery of drug through surface functionalized nanofibers results in improved permeation and bioavailability of drug which is important for better targeting of disease and therapeutic efficacy. This review provides a comprehensive insight about various techniques of surface functionalization of nanofibers along with its biomedical applications, toxicity assessment and global patent scenario.

5.
Pharmaceutics ; 14(5)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35631683

RESUMO

Microneedle (MNs) technology is a recent advancement in biomedical science across the globe. The current limitations of drug delivery, like poor absorption, low bioavailability, inadequate skin permeation, and poor biodistribution, can be overcome by MN-based drug delivery. Nanotechnology made significant changes in fabrication techniques for microneedles (MNs) and design shifted from conventional to novel, using various types of natural and synthetic materials and their combinations. Nowadays, MNs technology has gained popularity worldwide in biomedical research and drug delivery technology due to its multifaceted and broad-spectrum applications. This review broadly discusses MN's types, fabrication methods, composition, characterization, applications, recent advancements, and global intellectual scenarios.

6.
ACS Biomater Sci Eng ; 8(6): 2161-2195, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35522605

RESUMO

In recent decades there has been growing interest of material chemists in the successful development of functional materials for drug delivery, tissue engineering, imaging, diagnosis, theranostic, and other biomedical applications with advanced nanotechnology tools. The efficacy and safety of functional materials are determined by their pharmacological, toxicological, and immunogenic effects. It is essential to consider all degradation pathways of functional materials and to assess plausible intermediates and final products for quality control. This review provides a brief insight into chemical degradation mechanisms of functional materials like oxidation, photodegradation, and physical and enzymatic degradation. The intermediates and products of degradation were confirmed with analytical methods such as proton nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC), UV-vis spectroscopy (UV-vis), infrared spectroscopy (IR), differential scanning calorimetry (DSC), mass spectroscopy, and other sophisticated analytical methods. These analytical methods are also used for regulatory, quality control, and stability purposes in industry. The assessment of degradation is important to predetermine the behavior of functional materials in specific storage conditions and can be relevant to their behavior during in vivo applications. Another important aspect is the evaluation of the toxicity of functional materials. Toxicity can be accessed with various methods using in vitro, in vivo, ex vivo, and in silico models. In vitro cell culture methods are used to determine mitochondrial damage, reactive oxygen species, stress responses, and cellular toxicity. In vitro cellular toxicity can be measured by MTT assay, LDH leakage assay, and hemolysis. In vivo studies are performed using various animal models involving zebrafish, rodents (mice and rats), and nonhuman primates. Ex vivo studies are also used for efficacy and toxicity determinations of functional materials like ex vivo potency assay and precision-cut liver slice (PCLS) models. The in silico tools with computational simulations like quantitative structure-activity relationships (QSAR), pharmacokinetics (PK) and pharmacodynamics (PD), dose and time response, and quantitative cationic-activity relationships ((Q)CARs) are used for prediction of the toxicity of functional materials. In this review, we studied the principle methods used for degradation studies, different degradation pathways, and mechanisms of functional material degradation with prototype examples. We discuss toxicity assessments with different toxicity approaches used for estimation of the safety and efficacy of functional materials.


Assuntos
Sistemas de Liberação de Medicamentos , Peixe-Zebra , Animais , Camundongos , Modelos Animais , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA