Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014154

RESUMO

Increased deposition of extracellular matrix (ECM) components such as collagens and hyaluronan contributes to the pathogenesis of obesity-associated insulin resistance in muscle, liver, and adipose tissue. Despite the significance of the heart in cardiovascular and metabolic diseases, maladaptive ECM remodelling in obesity-associated cardiac insulin resistance and cardiac dysfunction has not been studied. Using genetic and pharmacological approaches in mice fed a high fat (HF) diet, we demonstrated a tight association between increased ECM deposition with cardiac insulin resistance. Increased collagen deposition by genetic deletion of matrix metalloproteinase 9 (MMP9) exacerbated cardiac insulin resistance and decreased hyaluronan deposition by treatment with PEGylated human recombinant hyaluronidase PH20 (PEGPH20) improved cardiac insulin resistance in obese mice. These relationships corresponded to functional changes in the heart. PEGPH20 treatment in obese mice ameliorated HF diet-induced abnormal myocardial remodelling. In addition to hyaluronan, increased collagen deposition is a characteristic of the obese mouse heart. We further demonstrated that pirfenidone, a clinically available anti-fibrotic medication which inhibits collagen expression, improved cardiac insulin resistance and cardiac function in obese mice. Our results provide important new insights into the role of ECM remodelling in the pathogenesis of cardiac insulin resistance and associated dysfunction in obesity of distinct mouse models. These findings support the novel therapeutic potential of targeting early cardiac ECM abnormalities in the prevention and treatment of obesity-related cardiovascular complications.

2.
Nat Commun ; 14(1): 5552, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689702

RESUMO

The microvasculature plays a key role in tissue perfusion and exchange of gases and metabolites. In this study we use human blood vessel organoids (BVOs) as a model of the microvasculature. BVOs fully recapitulate key features of the human microvasculature, including the reliance of mature endothelial cells on glycolytic metabolism, as concluded from metabolic flux assays and mass spectrometry-based metabolomics using stable tracing of 13C-glucose. Pharmacological targeting of PFKFB3, an activator of glycolysis, using two chemical inhibitors results in rapid BVO restructuring, vessel regression with reduced pericyte coverage. PFKFB3 mutant BVOs also display similar structural remodelling. Proteomic analysis of the BVO secretome reveal remodelling of the extracellular matrix and differential expression of paracrine mediators such as CTGF. Treatment with recombinant CTGF recovers microvessel structure. In this work we demonstrate that BVOs rapidly undergo restructuring in response to metabolic changes and identify CTGF as a critical paracrine regulator of microvascular integrity.


Assuntos
Células Endoteliais , Proteômica , Humanos , Bioensaio , Microvasos , Organoides , Monoéster Fosfórico Hidrolases
3.
Life Metab ; 2(4)2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37383542

RESUMO

Obesity causes extracellular matrix (ECM) remodelling which can develop into serious pathology and fibrosis, having metabolic effects in insulin-sensitive tissues. The ECM components may be increased in response to overnutrition. This review will focus on specific obesity-associated molecular and pathophysiological mechanisms of ECM remodelling and the impact of specific interactions on tissue metabolism. In obesity, complex network of signalling molecules such as cytokines and growth factors have been implicated in fibrosis. Increased ECM deposition contributes to the pathogenesis of insulin resistance at least in part through activation of cell surface integrin receptors and CD44 signalling cascades. These cell surface receptors transmit signals to the cell adhesome which orchestrates an intracellular response that adapts to the extracellular environment. Matrix proteins, glycoproteins, and polysaccharides interact through ligand-specific cell surface receptors that interact with the cytosolic adhesion proteins to elicit specific actions. Cell adhesion proteins may have catalytic activity or serve as scaffolds. The vast number of cell surface receptors and the complexity of the cell adhesome have made study of their roles challenging in health and disease. Further complicating the role of ECM-cell receptor interactions is the variation between cell types. This review will focus on recent insights gained from studies of two highly conserved, ubiquitously axes and how they contribute to insulin resistance and metabolic dysfunction in obesity. These are the collagen-integrin receptor-IPP (ILK-PINCH-Parvin) axis and the hyaluronan-CD44 interaction. We speculate that targeting ECM components or their receptor-mediated cell signalling may provide novel insights into the treatment of obesity-associated cardiometabolic complications.

4.
J Mol Endocrinol ; 66(2): 115-128, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33252358

RESUMO

The antidiabetic effects and mechanisms of action of an analogue of a frog skin host-defence peptide belonging to the caerulein-precursor fragment family, [S4K]CPF-AM1 were investigated in db/db mice with a genetically inherited form of degenerative diabetes-obesity. Twice-daily treatment with the peptide (75 nmol/kg body weight) for 28 days significantly decreased blood glucose (P < 0.01) and HbA1c (P < 0.05) and increased plasma insulin (P < 0.05) concentrations with no effect on body weight, energy intake, body composition or plasma lipid profile. Peptide administration improved insulin sensitivity and intraperitoneal glucose tolerance. Elevated biomarkers of liver and kidney function associated with the db/db phenotype were significantly lowered by [S4K]CPF-AM1 administration. Peptide treatment significantly (P < 0.05) increased pancreatic insulin content and improved the responses of isolated islets to established secretagogues. Elevated expression of genes associated with insulin signalling (Slc2a4, Insr, Irs1, Akt1, Pik3ca, Ppm1b) in the skeletal muscle of db/db mice were significantly downregulated by peptide treatment. Genes associated with insulin secretion (Abcc8, Kcnj11, Slc2a2, Cacn1c, Glp1r, Gipr) were significantly upregulated by treatment with [S4K]CPF-AM1. Studies with BRIN-BD1I clonal ß-cells demonstrated that the peptide evoked membrane depolarisation, increased intracellular Ca2+ and cAMP and activated the protein kinase C pathway. The data indicate that the antidiabetic properties of [S4K]CPF-AM1 mice are mediated by direct insulinotropic action and by regulation of transcription of genes involved in both the secretion and action of insulin.


Assuntos
Diabetes Mellitus Experimental/patologia , Hipoglicemiantes/farmacologia , Peptídeos/farmacologia , Sequência de Aminoácidos , Amilases/metabolismo , Animais , Glicemia/metabolismo , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular , Creatinina/metabolismo , AMP Cíclico/metabolismo , Diabetes Mellitus Experimental/sangue , Ingestão de Energia/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Teste de Tolerância a Glucose , Hipoglicemiantes/administração & dosagem , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Peptídeos/administração & dosagem , Peptídeos/química
5.
Peptides ; 136: 170472, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33338546

RESUMO

The antidiabetic actions of [A14K]PGLa-AM1, an analog of peptide glycine-leucine-amide-AM1 isolated from skin secretions of the octoploid frog Xenopus amieti, were investigated in genetically diabetic-obese db/db mice. Twice daily administration of [A14K]PGLa-AM1 (75 nmol/kg body weight) for 28 days significantly (P < 0.05) decreased circulating blood glucose and HbA1c and increased plasma insulin concentrations leading to improvements in glucose tolerance. The elevated levels of triglycerides, LDL and cholesterol associated with the db/db phenotype were significantly reduced by peptide administration. Elevated plasma alanine transaminase, aspartic acid transaminase, and alkaline phosphatase activities and creatinine concentrations were also significantly decreased. Peptide treatment increased pancreatic insulin content and improved the responses of isolated islets to established insulin secretagogues. No significant changes in islet ß-cell and α-cell areas were observed in [A14K]PGLa-AM1 treated mice but the loss of large and medium-size islets was prevented. Peptide administration resulted in a significant (P < 0.01) increase in islet expression of the gene encoding Pdx-1, a major transcription factor in islet cells determining ß-cell survival and function, resulting in increased expression of genes involved with insulin secretion (Abcc8, Kcnj11, Slc2a2, Cacn1c) together with the genes encoding the incretin receptors Glp1r and Gipr. In addition, the elevated expression of insulin signalling genes (Slc2a4, Insr, Irs1, Akt1, Pik3ca, Ppm1b) in skeletal muscle associated with the db/db phenotype was downregulated by peptide treatment These data suggest that the anti-diabetic properties of [A14K]PGLa-AM1 are mediated by molecular changes that enhance both the secretion and action of insulin.


Assuntos
Proteínas de Anfíbios/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Insulina/sangue , Obesidade/tratamento farmacológico , Proteínas de Anfíbios/síntese química , Animais , Peptídeos Catiônicos Antimicrobianos/síntese química , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/patologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Teste de Tolerância a Glucose , Hemoglobinas Glicadas/metabolismo , Humanos , Resistência à Insulina/genética , Camundongos , Obesidade/sangue , Obesidade/patologia
6.
Toxicon X ; 6: 100030, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32550585

RESUMO

Four peptides with cytotoxic activity against BRIN-BD11 rat clonal ß-cells were purified from the venom of the black-necked spitting cobra Naja nigricollis using reversed-phase HPLC. The peptides were identified as members of the three-finger superfamily of snake toxins by ESI-MS/MS sequencing of tryptic peptides. The most potent peptide (cytotoxin-1N) showed strong cytotoxic activity against three human tumor-derived cell lines (LC50 = 0.8 ± 0.2 µM for A549 non-small cell lung adenocarcinoma cells; LC50 = 7 ± 1 µM for MDA-MB-231 breast adenocarcinoma cells; and LC50 = 9 ± 1 µM for HT-29 colorectal adenocarcinoma cells). However, all the peptides were to varying degrees cytotoxic against HUVEC human umbilical vein endothelial cells (LC50 in the range 2-22 µM) and cytotoxin-2N was moderately hemolytic (LC50 = 45 ± 3 µM against mouse erythrocytes). The lack of differential activity against cells derived from non-neoplastic tissue limits their potential for development into anti-cancer agents. In addition, two proteins in the venom, identified as isoforms of phospholipase A2, effectively stimulated insulin release from BRIN-BD11 cells (an approximately 6-fold increase in rate compared with 5.6 mM glucose alone) at a concentration (1 µM) that was not cytotoxic to the cells suggesting possible application in therapy for Type 2 diabetes.

7.
Biochimie ; 167: 198-206, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31639404

RESUMO

The study investigates conformational analysis and the in vitro cytokine-mediated immunomodulatory and insulin-releasing activities of rhinophrynin-27 (ELRLPEIARPVPEVLPARLPLPALPRN; RP-27), a proline-arginine-rich peptide first isolated from skin secretions of the Mexican burrowing toad Rhinophrynus dorsalis (Rhinophrynidae). In both water and 50% trifluoroethanol-water, the peptide adopts a polyproline type II helical conformation with a high degree of deviation from the canonical collagen-like folding and a pronounced bend in the molecule at the Glu13 residue. Incubation of mouse peritoneal cells with RP-27 significantly (P < 0.05) inhibited production of the pro-inflammatory cytokines TNF-α and IL-1ß and stimulated production of the anti-inflammatory cytokine IL-10. The peptide significantly (P < 0.01) stimulated release of insulin from BRIN-BD11 rat clonal ß-cells at concentrations ≥ 1 nM while maintaining the integrity of the plasma membrane and also stimulated insulin release from isolated mouse islets at a concentration of 10-6 M. Increasing the cationicity of RP-27 by substituting glutamic acid residues in the peptide by arginine and increasing hydrophobicity by substituting alanine residues by tryptophan did not result in analogues with increased activity with respect to cytokine production and insulin release. The combination of immunosuppressive and insulinotropic activities together with very low cytotoxicity suggests that RP-27 may represent a template for the development of an agent for use in anti-inflammatory and Type 2 diabetes therapies.


Assuntos
Anti-Inflamatórios , Peptídeos Catiônicos Antimicrobianos , Hipoglicemiantes , Células Secretoras de Insulina/imunologia , Proteínas de Anfíbios/química , Proteínas de Anfíbios/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Células Cultivadas , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/citologia , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Conformação Molecular , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/metabolismo
8.
J Pept Sci ; 25(4): e3153, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30734396

RESUMO

The aim of the study was to determine the in vitro immunomodulatory, cytotoxic, and insulin-releasing activities of seven phylloseptin-TR peptides and plasticin-TR, first isolated from the frog Phyllomedusa trinitatis. The most cationic peptides, phylloseptin-1.1TR and phylloseptin-3.1TR, showed greatest cytotoxic potency against A549, MDA-MB231, and HT-29 human tumor-derived cells and against mouse erythrocytes. Phylloseptin-4TR was the most hydrophobic and the most effective peptide at inhibiting production of the proinflammatory cytokines TNF-α and IL-1ß by mouse peritoneal cells but was without effect on production of the antiinflammatory cytokine IL-10. Phylloseptin-2.1TR and phylloseptin-3.3TR were the most effective at stimulating the production of IL-10. The noncytotoxic peptide, plasticin-TR, inhibited production of TNF-α and IL-1ß but was without effect on IL-10 production. The results of CD spectroscopy suggest that the different properties of plasticin-TR compared with the immunostimulatory activities of the previously characterized plasticin-L1 from Leptodactylus laticeps may arise from greater ability of plasticin-TR to oligomerize and adopt a stable helical conformation in a membrane-mimetic environment. All peptides stimulated release of insulin from BRIN-BD11 rat clonal ß cells with phylloseptin-3.2TR being the most potent and effective and phylloseptin-2.1TR the least effective suggesting that insulinotropic potency correlates inversely with helicity. The study has provided insight into structure-activity relationships among the phylloseptins. The combination of immunomodulatory and insulinotropic activities together with low cytotoxicity suggests that phylloseptin-3.3TR and plasticin-TR may represent templates for the development of agents for use in antiinflammatory and type 2 diabetes therapies.


Assuntos
Anti-Inflamatórios/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Anuros , Citotoxinas/farmacologia , Proteínas do Olho/farmacologia , Imunomodulação/efeitos dos fármacos , Insulina/metabolismo , Proteínas do Tecido Nervoso/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/imunologia , Anti-Inflamatórios/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/imunologia , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Proteínas do Olho/química , Proteínas do Olho/imunologia , Proteínas do Olho/isolamento & purificação , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/imunologia , Proteínas do Tecido Nervoso/isolamento & purificação , Ratos
9.
Artigo em Inglês | MEDLINE | ID: mdl-30599276

RESUMO

Peptidomic analysis of norepinephrine-stimulated skin secretions from the Greek stream frog Rana graeca Boulenger, 1891 led to the identification and structural characterization of a range of host-defense peptides. These comprised brevinin-1GRa, brevinin-1GRb and an N-terminally extended form of brevinin-1GRb, ranatuerin-2GR together with its oxidized form and (11-28) fragment, temporin-GRa, temporin-GRb and its non-amidated form, and a melittin-related peptide, MRP-GR and its (1-18) fragment. The most abundant peptide, MRP-GR significantly (P < 0.001) stimulated insulin release from BRIN-BD11 clonal ß-cells at concentrations ≥0.1 nM. Rana graeca (formerly Rana graeca graeca) and the morphologically similar Italian stream frog Rana italica Dubois, 1987 (formerly Rana graeca italica) were originally regarded as sub-species. However, the primary structures of the host defense peptides from both frogs support the claim based upon comparisons of the nucleotide sequences of S1 satellite DNA that R. graeca and R. italica are separate species. Cladistic analyses based upon the primary structures of the brevinin-1 and ranatuerin-2 peptides from Eurasian frogs indicate a close phylogenetic relationship between R. graeca and Rana latastei whereas R. italica is most closely related to Rana dalmatina.


Assuntos
Proteínas de Anfíbios/metabolismo , Peptídeos/metabolismo , Filogenia , Ranidae/classificação , Pele/metabolismo , Sequência de Aminoácidos , Proteínas de Anfíbios/química , Animais , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Insulina/metabolismo , Peptídeos/química , Ranidae/metabolismo , Ratos , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
Biochimie ; 156: 12-21, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30244134

RESUMO

Of four naturally occurring frenatin peptides tested, frenatin 2D (DLLGTLGNLPLPFI.NH2) from Discoglossus sardus was the most potent and effective in producing concentration-dependent stimulation of insulin release from BRIN-BD11 rat clonal ß-cells without displaying cytotoxicity. The peptide also stimulated insulin release from 1.1B4 human-derived clonal ß-cells and isolated mouse islets and improved glucose tolerance concomitant with increased circulating insulin concentrations in mice following intraperitoneal administration. The insulinotropic activity of frenatin 2D was not associated with membrane depolarization or an increase in intracellular [Ca2+] but incubation of the peptide (1 µM) with BRIN-BD11 cells produced a modest, but significant (P < 0.05), increase in cAMP production. Stimulation of insulin release was abolished in protein kinase A-downregulated cells but maintained in protein kinase C-downregulated cells. Circular dichroism studies showed that, in the presence of dodecylphosphocholine micelles, frenatin 2D exhibited a helical content of 35% and a turn content of 28%. Substitution of the Thr5, Asn8, Pro10, and Ile14 residues in frenatin-2D by Trp and interchange of Pro12 and Phe13 led to loss of insulinotropic activity but the [D1W] and [G7W] analogues were as potent and effective as the native peptide. Frenatin 2D (1 µM) also stimulated proliferation of BRIN-BD11 cells and provided significant protection of the cells against cytokine-induced apoptosis. It is concluded that the insulinotropic activity of frenatin 2D is mediated predominantly, if not exclusively, by the KATP channel-independent pathway.


Assuntos
Proteínas de Anfíbios , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Proteínas de Anfíbios/química , Proteínas de Anfíbios/farmacologia , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Masculino , Camundongos , Estrutura Secundária de Proteína , Ratos , Relação Estrutura-Atividade
11.
Amino Acids ; 50(6): 723-734, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29549522

RESUMO

Long-standing Type 2 diabetes is associated with loss of both ß-cell function and ß-cell mass. Peptides derived from the frog-skin host-defense peptide esculentin-1 have been shown to exhibit potent, broad-spectrum antimicrobial activity. The aim of the present study is to determine whether such peptides also show insulinotropic and ß-cell protective activities. Esculentin-1a(1-21).NH2, esculentin-1b(1-18).NH2, and esculentin-1a(1-14).NH2 produced concentration-dependent stimulations of insulin release from BRIN-BD11 rat clonal ß-cells, 1.1B4 human-derived pancreatic ß-cells, and isolated mouse islets with no cytotoxicity at concentrations of up to 3 µM. The mechanism of insulinotropic action involved membrane depolarization and an increase in intracellular Ca2+ concentrations. The analogue [D-Lys14, D-Ser17]esculentin-1a(1-21).NH2 (Esc(1-21)-1c) was less potent in vitro than the all L-amino acid containing peptides and esculentin-1a(9-21) was inactive indicating that helicity is an important determinant of insulinotropic activity. However, intraperitoneal injection of Esc(1-21)-1c (75 nmol/kg body weight) together with a glucose load (18 mmol/kg body weight) in C57BL6 mice improved glucose tolerance with a concomitant increase in insulin secretion, whereas administration of esculentin-1a(1-21).NH2, esculentin-1b(1-18).NH2, and esculentin-1a(1-14) was without significant effect on plasma glucose levels. Esc(1-21)-1c (1 µM) protected BRIN-BD11 cells against cytokine-induced apoptosis (P < 0.01) and augmented proliferation of the cells (P < 0.01) to a similar extent as glucagon-like peptide-1. The data demonstrate that the multifunctional peptide Esc(1-21)-1c, as well as showing therapeutic potential as an anti-infective and wound-healing agent, may constitute a template for development of compounds for treatment of patients with Type 2 diabetes.


Assuntos
Proteínas de Anfíbios/farmacologia , Apoptose/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Peptídeos/farmacologia , Proteínas de Anfíbios/química , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Relação Dose-Resposta a Droga , Humanos , Hipoglicemiantes/química , Células Secretoras de Insulina/patologia , Camundongos , Peptídeos/química , Ranidae , Ratos
12.
J Pept Sci ; 24(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29349894

RESUMO

Temporin A (FLPLIGRVLSGIL-NH2 ), temporin F (FLPLIGKVLSGIL-NH2 ), and temporin G (FFPVIGRILNGIL-NH2 ), first identified in skin secretions of the frog Rana temporaria, produced concentration-dependent stimulation of insulin release from BRIN-BD11 rat clonal ß-cells at concentrations ≥1 nM, without cytotoxicity at concentrations up to 3 µM. Temporin A was the most effective. The mechanism of insulinotropic action did not involve an increase in intracellular Ca2+ concentrations. Temporins B, C, E, H, and K were either inactive or only weakly active. Temporins A, F, and G also produced a concentration-dependent stimulation of insulin release from 1.1B4 human-derived pancreatic ß-cells, with temporin G being the most potent and effective, and from isolated mouse islets. The data indicate that cationicity, hydrophobicity, and the angle subtended by the charged residues in the temporin molecule are important determinants for in vitro insulinotropic activity. Temporin A and F (1 µM), but not temporin G, protected BRIN-BD11 cells against cytokine-induced apoptosis (P < 0.001) and augmented (P < 0.001) proliferation of the cells to a similar extent as glucagon-like peptide-1. Intraperitoneal injection of temporin G (75 nmol/kg body weight) together with a glucose load (18 mmol/kg body weight) in C57BL6 mice improved glucose tolerance with a concomitant increase in insulin secretion whereas temporin A and F administration was without significant effect on plasma glucose levels. The study suggests that combination therapy involving agents developed from the temporin A and G sequences may find application in Type 2 diabetes treatment.


Assuntos
Proteínas de Anfíbios/farmacologia , Glucose/farmacologia , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Proteínas/farmacologia , Rana temporaria/metabolismo , Pele/química , Alanina/farmacologia , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos , Proliferação de Células , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Injeções Intraperitoneais , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Isoformas de Proteínas/farmacologia , Ratos
13.
J Pept Sci ; 23(10): 769-776, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28699258

RESUMO

Peptidomic analysis of norepinephrine-stimulated skin secretions from Italian stream frog Rana italica led to the purification and characterization of two host-defense peptides differing by a single amino acid residue belonging to the brevinin-1 family (brevinin-1ITa and -1ITb), a peptide belonging to the temporin family (temporin-ITa) and a component identified as prokineticin Bv8. The secretions contained relatively high concentrations of the methionine-sulphoxide forms of brevinin-1ITa and -1ITb suggesting that these peptides may have a role as antioxidants in the skin of this montane frog. Brevinin-1ITa (IVPFLLGMVPKLVCLITKKC) displayed potent cytotoxicity against non-small cell lung adenocarcinoma A549 cells (LC50  = 18 µM), breast adenocarcinoma MDA-MB-231 cells (LC50  = 8 µM) and colorectal adenocarcinoma HT-29 cells (LC50  = 18 µM), but the peptide was also strongly hemolytic against mouse erythrocytes (LC50  = 7 µM). Temporin-ITa (VFLGAIAQALTSLLGKL.NH2 ) was between three and fivefold less potent against these cells. Brevinin-1ITa inhibited growth of both Gram-positive Staphylococcus epidermidis and Gram-negative Escherichia coli as well as a strain of the opportunist yeast pathogen Candida parapsilosis, whereas temporin-ITa was active only against S. epidermidis and C. parapsilosis. Both peptides stimulated the release of insulin from BRIN-BD11 clonal ß-cells at concentrations ≥1 nM, but brevinin-1ITa was cytotoxic to the cells at concentrations ≥3 µM. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Proteínas de Anfíbios/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Pele/metabolismo , Proteínas de Anfíbios/farmacologia , Proteínas de Anfíbios/toxicidade , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/toxicidade , Anuros/metabolismo , Escherichia coli/efeitos dos fármacos , Células HT29 , Hemólise/efeitos dos fármacos , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Ranidae , Staphylococcus epidermidis/efeitos dos fármacos
14.
Biochimie ; 138: 1-12, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28392407

RESUMO

PGLa-AM1 (GMASKAGSVL10GKVAKVALKA20AL.NH2) was first identified in skin secretions of the frog Xenopus amieti (Pipidae) on the basis of its antimicrobial properties. PGLa-AM1 and its [A14K] and [A20K] analogues produced a concentration-dependent stimulation of insulin release from BRIN-BD11 rat clonal ß-cells without cytotoxicity at concentrations up to 3 µM. In contrast, the [A3K] analogue was cytotoxic at concentrations ≥ 30 nM. The potency and maximum rate of insulin release produced by the [A14K] and [A20K] peptides were significantly greater than produced by PGLa-AM1. [A14K]PGLa-AM1 also stimulated insulin release from mouse islets at concentrations ≥ 1 nM and from the 1.1B4 human-derived pancreatic ß-cell line at concentrations > 30 pM. PGLa-AM1 (1 µM) produced membrane depolarization in BRIN-BD11 cells with a small, but significant (P < 0.05), increase in intracellular Ca2+ concentrations but the peptide had no direct effect on KATP channels. The [A14K] analogue (1 µM) produced a significant increase in cAMP concentration in BRIN-BD11 cells and down-regulation of the protein kinase A pathway by overnight incubation with forskolin completely abolished the insulin-releasing effects of the peptide. [A14K]PGLa-AM1 (1 µM) protected against cytokine-induced apoptosis (p < 0.001) in BRIN-BD11 cells and augmented (p < 0.001) proliferation of the cells to a similar extent as GLP-1. Intraperitoneal administration of the [A14K] and [A20K] analogues (75 nmol/kg body weight) to both lean mice and high fat-fed mice with insulin resistance improved glucose tolerance with a concomitant increase in insulin secretion. The data provide further support for the assertion that host defense peptides from frogs belonging to the Pipidae family show potential for development into agents for the treatment of patients with Type 2 diabetes.


Assuntos
Proteínas de Anfíbios/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Hipoglicemiantes/uso terapêutico , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , Proteínas de Xenopus/uso terapêutico , Animais , Cálcio/metabolismo , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/genética , Regulação para Baixo , Humanos , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Camundongos , Pipidae , Ratos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA