Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1348876, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645555

RESUMO

Introduction: The human umbilical artery (HUA), rat-isolated right atrium, and rat-isolated vas deferens present a basal release of 6-nitrodopamine (6-ND). The basal release of 6-ND from these tissues was significantly decreased (but not abolished) when the tissues were pre-incubated with Nω-nitro-L-arginine methyl ester (L-NAME). Methods: In this study, the effect of the pharmacological modulation of the redox environment on the basal release of 6-ND was investigated. The basal release of 6-ND was measured using Liquid chromatography with tandem mass spectrometry (LC-MS/MS). Results and Discussion: Pre-incubation (30 min) of the tissues with GKT137831 (1 µM) caused a significant increase in the basal release of 6-ND from all tissues. In the HUA, pre-incubation with diphenyleneiodonium (DPI) (100 µM) also caused significant increases in the basal release of 6-ND. Preincubation of the HUA with hydrogen peroxide (H2O2) (100 µM) increased 6-ND basal release, whereas pre-incubation with catalase (1,000 U/mL) significantly decreased it. Pre-incubation of the HUA with superoxide dismutase (SOD) (250 U/mL; 30 min) also significantly increased the basal release of 6-ND. Preincubation of the HUA with either allopurinol (100 µM) or uric acid (1 mM) had no effect on the basal release of 6-ND. Pre-treatment of the HUA with L-NAME (100 µM) prevented the increase in the basal release of 6-ND induced by GKT137831, diphenyleneiodonium, and H2O2. The results obtained indicate a major role of endogenous H2O2 and peroxidases as modulators of 6- ND biosynthesis/release and a lack of peroxynitrite contribution.

2.
Antioxid Redox Signal ; 40(4-6): 250-271, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37597204

RESUMO

Significance: Cancer is a complex and heterotypic structure with a spatial organization that contributes to challenges in therapeutics. Enzymes associated with producing the gasotransmitter hydrogen sulfide (H2S) are differentially expressed in tumors. Indeed, critical and paradoxical roles have been attributed to H2S in cancer-promoting characteristics by targeting both cancer cells and their milieu. This review focuses on the evidence and knowledge gaps of H2S on the tumor redox microenvironment and the pharmacological effects of H2S donors on cancer biology. Recent Advances: Endogenous and pharmacological concentrations of H2S evoke different effects on the same cell type: physiological H2S concentrations have been associated with tumor development and progression. In contrast, pharmacological concentrations have been associated with anticancer effects. Critical Issues: The exact threshold between the promotion and inhibition of tumorigenesis by H2S is largely unknown. The main issues covered in this review include H2S-modulated signaling pathways that are critical for cancer cells, the potential effects of H2S on cellular components of the tumor microenvironment, temporal modulation of H2S in promoting or inhibiting tumor progression (similar to observed for inflammation), and pharmacological agents that modulate H2S and which could play a role in antineoplastic therapy. Future Directions: Given the complexity and heterogeneity of tumor composition, mechanistic studies on context-dependent pharmacological effects of H2S donors for cancer therapy are necessary. These studies must determine the critical signaling pathways and the cellular components involved to allow advances in the rational use of H2S donors as antineoplastic agents. Antioxid. Redox Signal. 40, 250-271.


Assuntos
Gasotransmissores , Sulfeto de Hidrogênio , Neoplasias , Humanos , Sulfeto de Hidrogênio/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Gasotransmissores/metabolismo , Transdução de Sinais , Carcinogênese , Microambiente Tumoral
3.
Antioxid Redox Signal ; 40(4-6): 272-291, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-36974358

RESUMO

Significance: Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are, to date, the identified members of the gasotransmitter family, which consists of gaseous signaling molecules that play central roles in the regulation of a wide variety of physiological and pathophysiological processes, including inflammatory edema. Recent Advances: Recent studies show the potential anti-inflammatory and antiedematogenic effects of NO-, CO-, and H2S-donors in vivo. In general, it has been observed that the therapeutical effects of NO-donors are more relevant when administered at low doses at the onset of the inflammatory process. Regarding CO-donors, their antiedematogenic effects are mainly associated with inhibition of proinflammatory mediators (such as inducible NO synthase [iNOS]-derived NO), and the observed protective effects of H2S-donors seem to be mediated by reducing some proinflammatory enzyme activities. Critical Issues: The most recent investigations focus on the interactions among the gasotransmitters under different pathophysiological conditions. However, the biochemical/pharmacological nature of these interactions is neither general nor fully understood, although specifically dependent on the site where the inflammatory edema occurs. Future Directions: Considering the nature of the involved mechanisms, a deeper knowledge of the interactions among the gasotransmitters is mandatory. In addition, the development of new pharmacological tools, either donors or synthesis inhibitors of the three gasotransmitters, will certainly aid the basic investigations and open new strategies for the therapeutic treatment of inflammatory edema. Antioxid. Redox Signal. 40, 272-291.


Assuntos
Gasotransmissores , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/uso terapêutico , Sulfeto de Hidrogênio/farmacologia , Óxido Nítrico , Transdução de Sinais , Monóxido de Carbono
4.
Alcohol ; 112: 31-39, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37479092

RESUMO

Locomotor behavioral sensitization represents an animal model for understanding neuroadaptive processes related to repeated drug exposure. Repeated stress can elicit a cross-sensitization to the stimulant response of ethanol, which involves neuronal nitric oxide synthase (nNOS). Activation of N-methyl d-aspartate (NMDA) glutamate receptors triggers nNOS and the synthesis of nitric oxide (NO). In this study, we investigated the effects of blocking NMDA receptors using the NMDA receptor antagonist MK-801 on the cross-sensitization between restraint stress and ethanol. We also evaluated the nNOS activity in the prefrontal cortex (PFC) and hippocampus. Mice were pretreated with saline or MK-801 30 min before an injection of saline or stress exposure for 14 days. On the following day, they were challenged with either saline or 1.8 g/kg ethanol. Swiss male mice pretreated with 0.25 mg/kg MK-801 exhibited a sensitized response to ethanol. Moreover, MK-801 potentiated the cross-sensitization between stress and ethanol. However, MK-801 prevented the enhanced nNOS activity in stress-exposed groups (challenged with saline or ethanol) in the PFC; the antagonist also prevented the ethanol-induced increase in nNOS activity and reduced this enzyme activity in mice exposed to stress in the hippocampus. These data indicate that systemic treatment with the NMDA antagonist potentiated, rather than blocked, ethanol-induced behavioral sensitization and that this effect is dissociable from the capacity of NMDA antagonists to reduce ethanol/stress-induced NOS stimulation in the PFC and hippocampus.

5.
Pharmaceutics ; 15(7)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37514093

RESUMO

Hydrogen sulfide (H2S) is particularly produced in the skin, where it participates in the regulation of inflammation, pruritus, cytoprotection, scarring, and angiogenesis. In this study, we compared the effects of dexamethasone (Dex) with two H2S-releasing Dex derivatives in a murine model of atopic dermatitis (AD) induced by topical application of 2,4-dinitrochlorobenzene (DNCB). After sensitization with DNCB, the animals were topically treated for five consecutive days with either the H2S-releasing compounds 4-hydroxy-thiobenzamide (TBZ) and 5-(p-hydroxyphenyl)-1,2-dithione-3-thione (ADT-OH), Dex, or the derivatives Dex-TBZ or Dex-ADT. Topical treatment with equimolar doses of either Dex, Dex-TBZ, or Dex-ADT resulted in similar reductions in dermatitis score, scratching behavior, edema, eosinophilia, splenomegaly, and histological changes. In contrast with Dex, the H2S-releasing derivatives prevented IL-4 elevation and oxidative modification of skin proteins. On an equimolar dose basis, Dex-TBZ, but not Dex-ADT, promoted the elevation of endogenous H2S production and GPx activity. Neither Dex-TBZ nor Dex-ADT decreased GR activity or caused hyperglycemia, as observed with Dex treatment. We conclude that the presence of H2S-releasing moieties in the Dex structure does not interfere with the anti-inflammatory effects of this corticosteroid and adds beneficial therapeutical actions to the parent compound.

6.
Front Pharmacol ; 14: 1145860, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492091

RESUMO

Background: The prostate gland is surrounded by periprostatic adipose tissue (PPAT) that can release mediators that interfere in prostate function. In this study, we examined the effect of periprostatic adipose tissue supernatant obtained from obese mice on prostate reactivity in vitro and on the viability of human prostatic epithelial cell lines. Methods: Male C57BL/6 mice were fed a standard or high-fat diet after which PPAT was isolated, incubated in Krebs-Henseleit solution for 30 min (without prostate) or 60 min (with prostate), and the supernatant was then collected and screened for biological activity. Total nitrate and nitrite (NOx-) and adenosine were quantified, and the supernatant was then collected and screened for biological activity. NOx- and adenosine were quantified. Concentration-response curves to phenylephrine (PE) were obtained in prostatic tissue from lean and obese mice incubated with or without periprostatic adipose tissue. In some experiments, periprostatic adipose tissue was co-incubated with inhibitors of the nitric oxide (NO)-cyclic guanosine monophosphate pathway (L-NAME, 1400W, ODQ), adenylate cyclase (SQ22536) or with adenosine A2A (ZM241385), and A2B (MRS1754) receptor antagonists. PNT1-A (normal) and BPH-1 (hyperplasic) human epithelial cells were cultured and incubated with supernatant from periprostatic adipose tissue for 24, 48, or 72 h in the absence or presence of these inhibitors/antagonists, after which cell viability and proliferation were assessed. Results: The levels of NOx- and adenosine were significantly higher in the periprostatic adipose tissue supernatant (30 min, without prostate) when compared to the vehicle. A trend toward an increase in the levels of NOX was observed after 60 min. PPAT supernatant from obese mice significantly reduced the PE-induced contractions only in prostate from obese mice. The co-incubation of periprostatic adipose tissue with L-NAME, 1400W, ODQ, or ZM241385 attenuated the anticontractile activity of the periprostatic adipose tissue supernatant. Incubation with the supernatant of periprostatic adipose tissue from obese mice significantly increased the viability of PNT1-A cells and attenuated expression of the apoptosis marker protein caspase-3 when compared to cells incubated with periprostatic adipose tissue from lean mice. Hyperplastic cells (BPH-1) incubated with periprostatic adipose tissue from obese mice showed greater proliferation after 24 h, 48 h, and 72 h compared to cells incubated with culture medium alone. BPH-1 cell proliferation in the presence of PPAT supernatant was attenuated by NO-signaling pathway inhibitors and by adenosine receptor antagonists after 72 h. Conclusion: NO and adenosine are involved in the anticontractile and pro-proliferative activities of periprostatic adipose tissue supernatant from obese mice. More studies are needed to determine whether the blockade of NO and/or adenosine derived from periprostatic adipose tissue can improve prostate function.

7.
J Adv Res ; 35: 267-277, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35024201

RESUMO

Introduction: Hydrogen sulfide (H2S) is a fundamental biological endogenous gas-mediator in the respiratory system. It regulates pivotal patho-physiological processes such as oxidative stress, pulmonary circulation, airway tone and inflammation. Objectives: We herein describe the design and synthesis of molecular hybrids obtained by the condensation of several corticosteroids with different hydrogen sulfide releasing moieties. Methods: All the molecules are characterized for their ability to release H2S both via amperometric approach and using a fluorescent probe. The chemical stability of the newly synthesized hybrid molecules has been investigated at differing pH values and in human serum. Results: Prednisone-TBZ hybrid (compound 7) was selected for further evaluations. The obtained results from the in vitro and in vivo studies clearly show evidence in favor of the anti-inflammatory properties of the released H2S. Conclusions: The protective effect on airway remodeling makes the hybrid Prednisone-TBZ (compound 7) as a promising therapeutic option in reducing allergic asthma symptoms and exacerbations.


Assuntos
Asma , Sulfeto de Hidrogênio , Corticosteroides , Animais , Anti-Inflamatórios , Asma/tratamento farmacológico , Modelos Animais de Doenças , Humanos , Camundongos
8.
Life Sci ; 232: 116604, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31260684

RESUMO

Chronic kidney disease (CKD) patients present L-arginine (L-arg) deficiency and L-arg supplementation has been used as a treatment. In addition, sarcopenia is another common problem in CKD population, resistance training (RT) is one of the conservative strategies developed to prevent CKD progression, and however there are no evidences of a combination of these two strategies to treat CKD outcomes. The aim of this study was to evaluate the effects of oral L-arg supplementation combined with RT in an experimental model of CKD. Twenty-five Munich-Wistar male rats, 8-week-old were divided in 5 groups: Sham (sedentary control), Nx (CKD sedentary), Nx L-arg (CKD sedentary supplemented with 2% of L-arg), Nx RT (CKD exercised) Nx RT + L-arg (CKD exercised and supplemented with 2% of L-arg). CKD model was obtained by a subtotal 5/6 nephrectomy. RT was performed on a ladder climbing, three weekly sessions on non-consecutive days, with an intensity of 70% maximum carrying capacity. They were submitted to RT and/or L-arg supplementation for 10 weeks. There was a significant improvement in muscle strength, renal function, anti-inflammatory cytokines, arginase metabolism and renal fibrosis after RT. However, the combination of RT and L-arg impaired all the improvements promoted by RT alone. The L-arg supplementation alone did not impair renal fibrosis and renal function. In conclusion, RT improved inflammatory balance, muscle strength, renal function and consequently decreased renal fibrosis. Nevertheless, the association with L-arg supplementation prevented all these effects promoted by RT.


Assuntos
Arginina/farmacologia , Condicionamento Físico Animal/fisiologia , Insuficiência Renal Crônica/dietoterapia , Animais , Arginina/metabolismo , Citocinas/metabolismo , Suplementos Nutricionais , Progressão da Doença , Fibrose/metabolismo , Rim/metabolismo , Masculino , Força Muscular/efeitos dos fármacos , Músculo Esquelético/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Condicionamento Físico Animal/métodos , Ratos , Ratos Wistar , Insuficiência Renal Crônica/metabolismo , Treinamento Resistido/métodos
9.
Oxid Med Cell Longev ; 2019: 9451671, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31223430

RESUMO

Transient receptor potential vanilloid 1 (TRPV1) is a Ca+2-permeable channel expressed on neuronal and nonneuronal cells, known as an oxidative stress sensor. It plays a protective role in bacterial infection, and recent findings indicate that this receptor modulates monocyte populations in mice with malaria; however, its role in cerebral malaria progression and outcome is unclear. By using TRPV1 wild-type (WT) and knockout (KO) mice, the importance of TRPV1 to this cerebral syndrome was investigated. Infection with Plasmodium berghei ANKA decreased TRPV1 expression in the brain. Mice lacking TRPV1 were protected against Plasmodium-induced mortality and morbidity, a response that was associated with less cerebral swelling, modulation of the brain expression of endothelial tight-junction markers (junctional adhesion molecule A and claudin-5), increased oxidative stress (via inhibition of catalase activity and increased levels of H2O2, nitrotyrosine, and carbonyl residues), and diminished production of cytokines. Plasmodium load was not significantly affected by TRPV1 ablation. Repeated subcutaneous administration of the selective TRPV1 antagonist SB366791 after malaria induction increased TRPV1 expression in the brain tissue and enhanced mouse survival. These data indicate that TRPV1 channels contribute to the development and outcome of cerebral malaria.


Assuntos
Encefalite/genética , Malária Cerebral/genética , Malária Cerebral/mortalidade , Canais de Cátion TRPV/metabolismo , Animais , Masculino , Camundongos
10.
Braz Dent J ; 30(2): 133-138, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30970055

RESUMO

In the present study we compared the effects of the selective COX-2 inhibitor etoricoxib with those of the classical non-selective NSAID diclofenac on the inflammatory process and alveolar bone loss in an experimental model of periodontitis in rats. Ninety male Holtzman rats (250 g) were randomly sorted into four experimental groups: Sham+CMC and Ligature+CMC (control) groups which received 0.5% carboxymethylcellulose sodium (CMC) solution; Ligature+Diclofenac and Ligature+Etoricoxib groups which received Potassium Diclofenac and Etoricoxib, respectively, suspended in 0.5% CMC (10 mg/kg/day). At 7, 14 and 21 days after placing ligatures in the cervical region of both the lower right and left first molars, the animals were euthanized. At the end of each period, the mandibles were collected for radiographic examination of alveolar bone loss. In addition, alveolar bone and periodontal ligament tissue samples were collected for COX-2 expression analysis and gingival tissues were collected for measurement of PGE2 contents. Animals with ligature-induced periodontal disease showed significant increased COX-2 gene expression at days 7, 14 and 21 (p<0.05) on alveolar bone and periodontal ligament. However, both treatments resulted in significantly reduced alveolar bone loss when compared to the untreated Ligature group (p<0.05), with no statistical difference between Etoricoxib and Diclofenac Potassium groups. This study shows that both drugs were able to reduce alveolar bone loss after periodontal disease induction.


Assuntos
Perda do Osso Alveolar , Periodontite , Animais , Ciclo-Oxigenase 2 , Gengiva , Masculino , Ratos , Ratos Wistar
11.
Alcohol ; 68: 71-79, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29525685

RESUMO

The peculiar neurochemical profile of the adolescent brain renders it differently susceptible to several stimuli, including stress and/or drug exposure. Among several stress mediators, nitric oxide (NO) has a role in stress responses. We have demonstrated that adolescent mice are less sensitive to ethanol-induced sensitization than adult mice. The present study investigated whether chronic unpredictable stress (CUS) induces behavioral sensitization to ethanol in adolescent and adult Swiss mice, and investigated the influence of Ca2+-dependent nitric oxide synthase (NOS) activity in the phenomenon. Adolescent and adult mice were exposed to repeated 1.8 g/kg ethanol or CUS and challenged with saline or ethanol. A neuronal nitric oxide synthase (nNOS) inhibitor, 7-nitroindazole (7NI), was administered along with ethanol and CUS to test its effects on behavioral sensitization. Both adolescent and adult mice displayed cross-sensitization between CUS and ethanol in adult mice, with adolescents showing a lower degree of sensitization than adults. nNOS inhibition by 7NI reduced both ethanol sensitization and cross-sensitization. All age differences in the Ca2+-dependent NOS activity in the hippocampus and prefrontal cortex were in the direction of greater activity in adults than in adolescents. Adolescents showed lower sensitivity to cross-sensitization between CUS and ethanol, and the nitric oxide (NO) system seems to have a pivotal role in ethanol-induced behavioral sensitization and cross-sensitization in both adolescent and adult mice.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Óxido Nítrico Sintase Tipo I/metabolismo , Estresse Psicológico/metabolismo , Envelhecimento/psicologia , Animais , Comportamento Animal/efeitos dos fármacos , Corticosterona/sangue , Inibidores Enzimáticos/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Indazóis/farmacologia , Camundongos , Atividade Motora/efeitos dos fármacos , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/enzimologia
12.
J Immunol Res ; 2017: 2078794, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29085843

RESUMO

Mentha piperita L. (peppermint) possesses antimicrobial properties, but little is known of its ability to modulate macrophages. Macrophages are essential in bacterial infection control due to their antimicrobial functions and ability to link the innate and adaptive immune responses. We evaluated the effects of the peppermint leaf hydroalcoholic extract (LHAE) on cultured murine peritoneal macrophages stimulated or not with lipopolysaccharide (LPS) in vitro. Vehicle-treated cells were used as controls. The constituents of the extract were also identified. Epicatechin was the major compound detected in the LHAE. LPS-induced macrophage death was reversed by incubation with LHAE (1-30 µg/ml). Higher concentrations of the extract (≥100 µg/ml) decreased macrophage viability (49-57%) in the absence of LPS. LHAE (1-300 µg/ml) attenuated H2O2 (34.6-53.4%) but not nitric oxide production by these cells. At similar concentrations, the extract increased the activity of superoxide dismutase (15.3-63.5-fold) and glutathione peroxidase (34.4-73.6-fold) in LPS-treated macrophages. Only LPS-unstimulated macrophages presented enhanced phagocytosis (3.6-6.6-fold increase) when incubated with LHAE (3-30 µg/ml). Overall, the LHAE obtained from peppermint modulates macrophage-mediated inflammatory responses, by stimulating the antioxidant pathway in these cells. These effects may be beneficial when the excessive activation of macrophages contributes to tissue damage during infectious disease.


Assuntos
Anti-Inflamatórios/uso terapêutico , Infecções Bacterianas/terapia , Catequina/uso terapêutico , Macrófagos/imunologia , Extratos Vegetais/uso terapêutico , Álcoois , Animais , Morte Celular , Células Cultivadas , Lipopolissacarídeos/imunologia , Mentha piperita/imunologia , Camundongos , Estresse Oxidativo , Folhas de Planta , Água
13.
J Photochem Photobiol B ; 177: 69-75, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29107204

RESUMO

Laser photobiomodulation or low-level laser therapy (LLLT) is recognized worldwide for its expansive use in medicine. LLLT has been reported to increase enzymatic activity, increasing the mitochondrial transmembrane potential, leading to an increased energy availability and signal transduction. Nevertheless, an inhibitory effect is also observed by the production of excessive ROS which can result the shutdown of mitochondrial energy production, and finally to apoptosis. However, the mechanism of apoptosis induced by LLLT is still not well understood. The main objective of the present study was to investigate the hypothesis that LLLT induces oxidative stress and stimulates the generation of pro-inflammatory markers interfering in tumor progression. METHODS: Seventy-two female Walker Tumor induced Wistar rats (eight weeks of age, 200g body weight) were used for this study. TW-256 cells were suspended in phosphate buffered saline and then subcutaneously inoculated at 1×107viabletumorcells/ml per rat into the right flank (tumor-bearing rats). After a period of 14days in order to assess the development of the solid tumor mass, the animals were randomized and distributed in four groups (n=8 animals/group): (1) Control or irradiated by LLLT (2) Laser 1J - 35,7J/cm2, (3) Laser 3J - 107,14J/cm2 and (4) Laser 6J - 214,28J/cm2; (Thera Laser - 660nm, 100mW DMC®, São Carlos, Brazil) at four equidistant points according to their respective treatment groups, conducted three times on alternate days. The regulation and expression of inflammatory mediators IL-1ß, IL-6, IL-10, TNF-α was assessed by ELISA and gene expression of COX-1, COX-2, iNOS, eNOS was analyzed by RT-PCR. RESULTS: We found that the 1Joule (J) treated group promoted a significant increase in the levels of different inflammatory markers IL-1ß, the gene expression of COX-2, iNOS, which was statistically different (p<0.05) when compared among different treatment and control groups. With Respect IL-6, IL-10, TNF-α levels statistically significant reduce was observed in 1Joule treated group when comparing to different energies groups and control group. CONCLUSION: Our results suggest the evidence 1J-35,7J/cm2 treatment was able to produce cytotoxic effects by generation of ROS causing acute inflammation and thus may be employed as the best energy dose associated with Photodynamic Therapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/radioterapia , Mediadores da Inflamação/metabolismo , Lasers de Estado Sólido , Terapia com Luz de Baixa Intensidade , Animais , Linhagem Celular Tumoral , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/análise , Ensaio de Imunoadsorção Enzimática , Feminino , Expressão Gênica/efeitos da radiação , Lasers de Estado Sólido/uso terapêutico , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
14.
Lasers Med Sci ; 32(9): 2111-2120, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28983756

RESUMO

Musculoskeletal injuries are very frequent and are responsible for causing pain and impairment of muscle function, as well as significant functional limitations. In the acute phase, the most prescribed treatment is with non-steroidal anti-inflammatory drugs (NSAIDs), despite their questionable effectiveness. However, the use of photobiomodulation therapy (PBMT) in musculoskeletal disorders has been increasing in the last few years, and this therapy appears to be an interesting alternative to the traditional drugs. The objective of the present study was to evaluate and compare the effects of PBMT, with different application doses, and topical NSAIDs, under morphological and functional parameters, during an acute inflammatory process triggered by a controlled model of musculoskeletal injury induced via contusion in rats. Muscle injury was induced by means of a single trauma to the animals' anterior tibialis muscle. After 1 h, the rats were treated with PBMT (830 nm; continuous mode, with a power output of 100 mW; 3.57 W/cm2; 1 J-35.7 J/cm2, 3 J-107.1 J/cm2, and 9 J-321.4 J/cm2; 10, 30, and 90 s) or diclofenac sodium for topical use (1 g). Morphological analysis (histology) and functional analysis (muscle work) were performed, 6, 12, and 24 h after induction of the injury. PBMT, with all doses tested, improved morphological changes caused by trauma; however, the 9 J (321.4 J/cm2) dose was the most effective in organizing muscle fibers and cell nuclei. On the other hand, the use of diclofenac sodium produced only a slight improvement in morphological changes. Moreover, we observed a statistically significant increase of muscle work in the PBMT 3 J (107.1 J/cm2) group in relation to the injury group and the diclofenac group (p < 0.05). The results of the present study indicate that PBMT, with a dose of 3 J (107.1 J/cm2), is more effective than the other doses of PBMT tested and NSAIDs for topical use as a means to improve morphological and functional alterations due to muscle injury from contusion.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacologia , Contusões/complicações , Terapia com Luz de Baixa Intensidade/métodos , Músculo Esquelético/lesões , Músculo Esquelético/patologia , Administração Tópica , Animais , Diclofenaco/farmacologia , Masculino , Músculo Esquelético/fisiopatologia , Músculo Esquelético/efeitos da radiação , Ratos Wistar
15.
Lasers Med Sci ; 32(8): 1879-1887, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28795275

RESUMO

Muscle injuries trigger an inflammatory process, releasing important biochemical markers for tissue regeneration. The use of non-steroidal anti-inflammatory drugs (NSAIDs) is the treatment of choice to promote pain relief due to muscle injury. NSAIDs exhibit several adverse effects and their efficacy is questionable. Photobiomodulation therapy (PBMT) has been demonstrated to effectively modulate inflammation induced from musculoskeletal disorders and may be used as an alternative to NSAIDs. Here, we assessed and compared the effects of different doses of PBMT and topical NSAIDs on biochemical parameters during an acute inflammatory process triggered by a controlled model of contusion-induced musculoskeletal injury in rats. Muscle injury was induced by trauma to the anterior tibial muscle of rats. After 1 h, rats were treated with PBMT (830 nm, continuous mode, 100 mW of power, 35.71 W/cm2; 1, 3, and 9 J; 10, 30, and 90 s) or diclofenac sodium (1 g). Our results demonstrated that PBMT, 1 J (35.7 J/cm2), 3 J (107.1 J/cm2), and 9 J (321.4 J/cm2) reduced the expression of tumor necrosis factor alpha (TNF-α) and cyclooxygenase-2 (COX-2) genes at all assessed times as compared to the injury and diclofenac groups (p < 0.05). The diclofenac group showed reduced levels of COX-2 only in relation to the injury group (p < 0.05). COX-2 protein expression remained unchanged with all therapies except with PBMT at a 3-J dose at 12 h (p < 0.05 compared to the injury group). In addition, PBMT (1, 3, and 9 J) effectively reduced levels of cytokines TNF-α, interleukin (IL)-1ß, and IL-6 at all assessed times as compared to the injury and diclofenac groups (p < 0.05). Thus, PBMT at a 3-J dose was more effective than other doses of PBMT and topical NSAIDs in the modulation of the inflammatory process caused by muscle contusion injuries.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Contusões/tratamento farmacológico , Contusões/radioterapia , Terapia com Luz de Baixa Intensidade/métodos , Músculo Esquelético/lesões , Administração Tópica , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Biomarcadores/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Diclofenaco/farmacologia , Diclofenaco/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/efeitos da radiação , Ratos Wistar , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
16.
J. Photochem. Photobiol. B. ; 177: 69-75, 2017.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17800

RESUMO

Laser photobiomodulation or low-level laser therapy (LLLT) is recognized worldwide for its expansive use in medicine. LLLT has been reported to increase enzymatic activity, increasing the mitochondrial transmembrane potential, leading to an increased energy availability and signal transduction. Nevertheless, an inhibitory effect is also observed by the production of excessive ROS which can result the shutdown of mitochondrial energy production, and finally to apoptosis. However, the mechanism of apoptosis induced by LLLT is still not well understood. The main objective of the present study was to investigate the hypothesis that LLLT induces oxidative stress and stimulates the generation of pro-inflammatory markers interfering in tumor progression. Methods Seventy-two female Walker Tumor induced Wistar rats (eight weeks of age, 200 g body weight) were used for this study. TW-256 cells were suspended in phosphate buffered saline and then subcutaneously inoculated at 1 × 107 viable tumor cells/ml per rat into the right flank (tumor-bearing rats). After a period of 14 days in order to assess the development of the solid tumor mass, the animals were randomized and distributed in four groups (n = 8 animals/group): (1) Control or irradiated by LLLT (2) Laser 1J – 35,7 J/cm2, (3) Laser 3 J – 107,14 J/cm2 and (4) Laser 6 J – 214,28 J/cm2; (Thera Laser - 660 nm, 100 mW DMC®, São Carlos, Brazil) at four equidistant points according to their respective treatment groups, conducted three times on alternate days. The regulation and expression of inflammatory mediators IL-1ß, IL-6, IL-10, TNF-a was assessed by ELISA and gene expression of COX-1, COX-2, iNOS, eNOS was analyzed by RT-PCR. Results We found that the 1 Joule (J) treated group promoted a significant increase in the levels of different inflammatory markers IL-1ß, the gene expression of COX-2, iNOS, which was statistically different (p < 0.05) when compared among different treatment and control groups. With Respect IL-6, IL-10, TNF-a levels statistically significant reduce was observed in 1 Joule treated group when comparing to different energies groups and control group. Conclusion Our results suggest the evidence 1 J–35,7 J/cm2 treatment was able to produce cytotoxic effects by generation of ROS causing acute inflammation and thus may be employed as the best energy dose associated with Photodynamic Therapy.

17.
Free Radic Res ; 50(12): 1350-1360, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27733068

RESUMO

INTRODUCTION: Acute pancreatitis (AP) may be severe and cause hospitalization or death, and the available treatment is insufficient to control pancreatic inflammation and pain. Rutin is a natural flavonoid with the potential to treat AP via anti-inflammatory, antinociceptive, and antioxidant activities. AIM: This study investigated the beneficial effects of rutin on experimental AP induced by l-arginine administration in mice. METHODS: The l-arginine-induced AP model was used in Swiss mice (n = 6-8). Mice submitted to AP induction were treated with rutin (37.5, 75, or 150 mg kg-1, p.o.) or vehicle (saline) after 24, 36, 48, and 60 h of AP induction. Abdominal hyperalgesia, serum enzymes, interleukin (IL)-6 levels, pancreatic inflammatory parameters, malondialdehyde (MDA) levels, antioxidant enzyme activities, and 3-nitrotyrosine contents were measured 72 h after induction. RESULTS: Mice submitted to l-arginine injections developed abdominal hyperalgesia and increased serum amylase, lipase, C-reactive protein and IL-6 concentrations; and increased pancreatic myeloperoxidase activity, edema index, MDA, and 3-nitrotyrosine contents. A marked decrease in catalase activity was observed in the pancreas without alterations of superoxide dismutase (SOD) activity compared with the control group. Rutin treatment significantly impaired all the parameters that were altered by AP induction, but increased catalase and SOD activities in the pancreas compared with the vehicle-treated group. CONCLUSION: Rutin treatment exerted a protective effect on l-arginine-induced AP by mechanisms involving the reduction of oxidative stress, which suggests that this flavonoid has a potential for future approaches designed for the management of AP.


Assuntos
Pâncreas/patologia , Pancreatite/tratamento farmacológico , Rutina/uso terapêutico , Doença Aguda , Animais , Antioxidantes , Flavonoides , Masculino , Camundongos , Estresse Oxidativo , Rutina/química
18.
Arch Oral Biol ; 63: 66-74, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26691575

RESUMO

OBJECTIVES: Considering the evident relationship between periodontitis and cardiovascular diseases in humans, we aimed to study the in vitro vascular reactivity of aorta rings prepared from rats with ligature-induced periodontitis. METHODS: Seven days after the induction of unilateral periodontitis, the animals were euthanised; rings were prepared from the descending abdominal aortas and mounted in tissue baths for the in vitro measurement of the isometric force responses to norepinephrine (NE) and acetylcholine (ACh), as well as in the presence of inhibitors of nitric oxide synthase (NOS) and cycloxygenase (COX) isoenzymes. Aortic COX and NOS gene expressions were analysed by RT-PCR, as well as protein COX-2 expression by Western blot. RESULTS: Periodontitis resulted in significant alveolar bone loss and did not affect arterial pressure. However, both NE-induced contraction and ACh-induced relaxation were significantly decreased and related to the presence of endothelium. Diminished eNOS and augmented COX-2 and iNOS expressions were found in the aortas from rats with periodontitis, and the pharmacological inhibition of COX-2 or iNOS improved the observed vasomotor deficiencies. CONCLUSIONS: We can thus conclude that periodontitis induces significant endothelial dysfunction in rat aorta which is characterized by decreased eNOS expression and mediated by upregulated iNOS and COX-2 products.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Periodontite/complicações , Acetilcolina/farmacologia , Animais , Aorta , Western Blotting , Técnicas In Vitro , Ligadura , Norepinefrina/farmacologia , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Vasoconstrição , Vasodilatação
19.
Med Gas Res ; 5: 4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25755876

RESUMO

BACKGROUND: In experimental periodontitis, non-steroidal antiinflammatory drugs (NSAIDs) effectively inhibit the resultant alveolar bone loss. However, their deleterious gastric effects, observed in both animals and humans, dramatically limit their long-term use. It has been proven that the addition of a hydrogen sulfide (H2S)-releasing moiety to classical NSAID structures results in antiinflammatory compounds with improved gastric safeness. In this way, we decided to compare the effects of naproxen with its H2S-releasing derivative ATB-346 on ligature-induced periodontitis in rats. METHODS: Male Holtzman rats had a cotton ligature placed subgingivally around the lower right first molar during 7 days. During this period, groups of animals were daily treated with Na2S (a spontaneous H2S donor) or equimolar oral doses of naproxen (10 mg/kg) or ATB-346 (16 mg/kg). The mandibles were finally collected for histological analysis, radiographical measurements of alveolar bone loss and micro-computed tomography (µCT) analysis. Interleukin (IL)-1ß, IL-6 and IL-10 were quantified in gingiva samples, and the stomachs were also collected for scoring of tissue damage and measurement of myeloperoxidase (MPO, a marker of granulocyte infiltration). RESULTS: Ligature-induced bone loss was significantly inhibited by all the treatments, although only ATB-346 treatment resulted in significant inhibition of bone defect and other histological characteristics (such as flatness of the gingival epithelium, chronic inflammatory cell infiltration and loss of connective tissue in the gingival papillae). Both naproxen and ATB-346 inhibited the increase of gingival IL-1ß and IL-6 secondary to periodontitis, but IL-10 was unaffected. Significant damage and increased MPO contents were only found in the stomachs of the naproxen-treated animals. CONCLUSION: The H2S-releasing moiety in the ATB-346 compound not only does not impair the effects of the parent naproxen on periodontitis, but also improves bone quality and prevents the gastric mucosa damage due to prostaglandin inhibition, thus configuring a potentially new adjuvant therapy for periodontal diseases.

20.
PLoS One ; 8(2): e54618, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23408945

RESUMO

This study aimed to compare the anti-neoplastic effects of an Uncaria tomentosa (UT) brute hydroethanolic (BHE) extract with those of two fractions derived from it. These fractions are choroformic (CHCl3) and n-butanolic (BuOH), rich in pentacyclic oxindole alkaloids (POA) and antioxidant substances, respectively. The cancer model was the subcutaneous inoculation of Walker-256 tumour cells in the pelvic limb of male Wistar rat. Subsequently to the inoculation, gavage with BHE extract (50 mg.kg(-1)) or its fractions (as per the yield of the fractioning process) or vehicle (Control) was performed during 14 days. Baseline values, corresponding to individuals without tumour or treatment with UT, were also included. After treatment, tumour volume and mass, plasma biochemistry, oxidative stress in liver and tumour, TNF-α level in liver and tumour homogenates, and survival rates were analysed. Both the BHE extract and its BuOH fraction successfully reduced tumour weight and volume, and modulated anti-oxidant systems. The hepatic TNF-α level indicated a greater effect from the BHE extract as compared to its BuOH fraction. Importantly, both the BHE extract and its BuOH fraction increased the survival time of the tumour-bearing animals. Inversely, the CHCl3 fraction was ineffective. These data represent an in vivo demonstration of the importance of the modulation of oxidative stress as part of the anti-neoplastic activity of UT, as well as constitute evidence of the lack of activity of isolated POAs in the primary tumour of this tumour lineage. These effects are possibly resulting from a synergic combination of substances, most of them with antioxidant properties.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma 256 de Walker/patologia , Unha-de-Gato/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Alanina Transaminase/sangue , Alcaloides/farmacologia , Animais , Aspartato Aminotransferases/sangue , Western Blotting , Carcinoma 256 de Walker/metabolismo , Catalase/metabolismo , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA