Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37398269

RESUMO

We previously described a process referred to as transmitophagy where mitochondria shed by retinal ganglion cell (RGC) axons are transferred to and degraded by surrounding astrocytes in the optic nerve head of mice. Since the mitophagy receptor Optineurin (OPTN) is one of few large-effect glaucoma genes and axonal damage occurs at the optic nerve head in glaucoma, here we explored whether OPTN mutations perturb transmitophagy. Live-imaging of Xenopus laevis optic nerves revealed that diverse human mutant but not wildtype OPTN increase stationary mitochondria and mitophagy machinery and their colocalization within, and in the case of the glaucoma-associated OPTN mutations also outside of, RGC axons. These extra-axonal mitochondria are degraded by astrocytes. Our studies support the view that in RGC axons under baseline conditions there are low levels of mitophagy, but that glaucoma-associated perturbations in OPTN result in increased axonal mitophagy involving the shedding and astrocytic degradation of the mitochondria.

2.
Cancer Discov ; 13(2): 474-495, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36287038

RESUMO

The bone microenvironment is dynamic and undergoes remodeling in normal and pathologic conditions. Whether such remodeling affects disseminated tumor cells (DTC) and bone metastasis remains poorly understood. Here, we demonstrated that pathologic fractures increase metastatic colonization around the injury. NG2+ cells are a common participant in bone metastasis initiation and bone remodeling in both homeostatic and fractured conditions. NG2+ bone mesenchymal stem/stromal cells (BMSC) often colocalize with DTCs in the perivascular niche. Both DTCs and NG2+ BMSCs are recruited to remodeling sites. Ablation of NG2+ lineage impaired bone remodeling and concurrently diminished metastatic colonization. In cocultures, NG2+ BMSCs, especially when undergoing osteodifferentiation, enhanced cancer cell proliferation and migration. Knockout of N-cadherin in NG2+ cells abolished these effects in vitro and phenocopied NG2+ lineage depletion in vivo. These findings uncover dual roles of NG2+ cells in metastasis and remodeling and indicate that osteodifferentiation of BMSCs promotes metastasis initiation via N-cadherin-mediated cell-cell interaction. SIGNIFICANCE: The bone colonization of cancer cells occurs in an environment that undergoes constant remodeling. Our study provides mechanistic insights into how bone homeostasis and pathologic repair lead to the outgrowth of disseminated cancer cells, thereby opening new directions for further etiologic and epidemiologic studies of tumor recurrences. This article is highlighted in the In This Issue feature, p. 247.


Assuntos
Neoplasias Ósseas , Osteogênese , Humanos , Osteogênese/genética , Recidiva Local de Neoplasia , Neoplasias Ósseas/genética , Diferenciação Celular , Remodelação Óssea , Caderinas/genética , Microambiente Tumoral
3.
Dev Cell ; 56(8): 1100-1117.e9, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33878299

RESUMO

Estrogen receptor-positive (ER+) breast cancer exhibits a strong bone tropism in metastasis. How the bone microenvironment (BME) impacts ER signaling and endocrine therapy remains poorly understood. Here, we discover that the osteogenic niche transiently and reversibly reduces ER expression and activities specifically in bone micrometastases (BMMs), leading to endocrine resistance. As BMMs progress, the ER reduction and endocrine resistance may partially recover in cancer cells away from the osteogenic niche, creating phenotypic heterogeneity in macrometastases. Using multiple approaches, including an evolving barcoding strategy, we demonstrated that this process is independent of clonal selection, and represents an EZH2-mediated epigenomic reprogramming. EZH2 drives ER+ BMMs toward a basal and stem-like state. EZH2 inhibition reverses endocrine resistance. These data exemplify how epigenomic adaptation to BME promotes phenotypic plasticity of metastatic seeds, fosters intra-metastatic heterogeneity, and alters therapeutic responses. Our study provides insights into the clinical enigma of ER+ metastatic recurrences despite endocrine therapies.


Assuntos
Adaptação Fisiológica , Osso e Ossos/patologia , Neoplasias da Mama/patologia , Receptores de Estrogênio/metabolismo , Microambiente Tumoral , Animais , Neoplasias Ósseas/secundário , Neoplasias da Mama/metabolismo , Comunicação Celular , Evolução Clonal , Modelos Animais de Doenças , Regulação para Baixo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Junções Comunicantes/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células MCF-7 , Camundongos , Micrometástase de Neoplasia , Osteogênese , Transdução de Sinais
4.
J Clin Invest ; 131(6)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33720051

RESUMO

Many solid cancers metastasize to the bone and bone marrow (BM). This process may occur even before the diagnosis of primary tumors, as evidenced by the discovery of disseminated tumor cells (DTCs) in patients without occult malignancies. The cellular fates and metastatic progression of DTCs are determined by complicated interactions between cancer cells and BM niches. Not surprisingly, these niches also play important roles in normal biology, including homeostasis and turnover of skeletal and hematopoiesis systems. In this Review, we summarize recent findings on functions of BM niches in bone metastasis (BoMet), particularly during the early stage of colonization. In light of the rich knowledge of hematopoiesis and osteogenesis, we highlight how DTCs may progress into overt BoMet by taking advantage of niche cells and their activities in tissue turnover, especially those related to immunomodulation and bone repair.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Medula Óssea/imunologia , Neoplasias da Medula Óssea/patologia , Neoplasias da Medula Óssea/secundário , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/patologia , Remodelação Óssea/imunologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Progressão da Doença , Feminino , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/patologia , Humanos , Privilégio Imunológico , Tolerância Imunológica , Masculino , Modelos Biológicos , Células Mieloides/imunologia , Metástase Neoplásica/imunologia , Metástase Neoplásica/patologia , Metástase Neoplásica/terapia , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/patologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Nicho de Células-Tronco/imunologia , Linfócitos T Reguladores/imunologia , Microambiente Tumoral/imunologia
5.
NPJ Breast Cancer ; 6: 42, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32964116

RESUMO

Migration and invasion are key properties of metastatic cancer cells. These properties can be acquired through intrinsic reprogramming processes such as epithelial-mesenchymal transition. In this study, we discovered an alternative "migration-by-tethering" mechanism through which cancer cells gain the momentum to migrate by adhering to mesenchymal stem cells or osteoblasts. This tethering is mediated by both heterotypic adherens junctions and gap junctions, and leads to a unique cellular protrusion supported by cofilin-coated actin filaments. Inhibition of gap junctions or depletion of cofilin reduces migration-by-tethering. We observed evidence of these protrusions in bone segments harboring experimental and spontaneous bone metastasis in animal models. These data exemplify how cancer cells may acquire migratory ability without intrinsic reprogramming. Furthermore, given the important roles of osteogenic cells in early-stage bone colonization, our observations raise the possibility that migration-by-tethering may drive the relocation of disseminated tumor cells between different niches in the bone microenvironment.

6.
Nat Cancer ; 1(7): 709-722, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-35122036

RESUMO

Polyclonal metastases frequently arise from clusters of circulating tumor cells (CTCs). CTC clusters metastasize better than single CTCs, but the underlying molecular mechanisms are poorly understood. Here, we show that polyclonal metastatic seeds exhibit higher resistance to natural killer (NK) cell killing. Using breast cancer models, we observed higher proportions of polyclonal lung metastasis in immunocompetent mice compared with mice lacking NK cells. Depleting NK cells selectively increased monoclonal but not polyclonal metastases, suggesting that CTC clusters are less sensitive to NK-mediated suppression. Transcriptional analyses revealed that clusters have elevated expression of cell-cell adhesion and epithelial genes, which is associated with decreased expression of NK cell activating ligands. Furthermore, perturbing tumor cell epithelial status altered NK ligand expression and sensitivity to NK-mediated killing. Collectively, our findings show that NK cells can determine the fate of CTCs of different epithelial and mesenchymal states, and impact metastatic clonal evolution by favoring polyclonal seeding.


Assuntos
Neoplasias Pulmonares , Células Neoplásicas Circulantes , Animais , Contagem de Células , Células Matadoras Naturais , Neoplasias Pulmonares/metabolismo , Camundongos , Monitorização Imunológica
7.
Cancer Cell ; 27(2): 193-210, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25600338

RESUMO

Breast cancer bone micrometastases can remain asymptomatic for years before progressing into overt lesions. The biology of this process, including the microenvironment niche and supporting pathways, is unclear. We find that bone micrometastases predominantly reside in a niche that exhibits features of osteogenesis. Niche interactions are mediated by heterotypic adherens junctions (hAJs) involving cancer-derived E-cadherin and osteogenic N-cadherin, the disruption of which abolishes niche-conferred advantages. We elucidate that hAJ activates the mTOR pathway in cancer cells, which drives the progression from single cells to micrometastases. Human data set analyses support the roles of AJ and the mTOR pathway in bone colonization. Our study illuminates the initiation of bone colonization, and provides potential therapeutic targets to block progression toward osteolytic metastases.


Assuntos
Neoplasias Ósseas/genética , Neoplasias da Mama/genética , Osteogênese/genética , Microambiente Tumoral/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Caderinas/genética , Linhagem Celular Tumoral , Feminino , Humanos , Estadiamento de Neoplasias , Serina-Treonina Quinases TOR/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA