Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuropsychopharmacology ; 46(12): 2197-2206, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34408277

RESUMO

Brain α2-containing GABAA receptors play a critical role in the modulation of anxiety- and fear-like behavior. However, it is unknown whether these receptors also play a role in modulating resilience to chronic stress, and in which brain areas and cell types such an effect would be mediated. We evaluated the role of α2-containing GABAA receptors following chronic social defeat stress using male mice deficient in the α2 subunit globally or conditionally in dopamine D1- or D2-receptor-expressing neurons, e.g., within the nucleus accumbens (NAc). In addition, we examined the effect of the lack of the α2 subunit on intermediates of the glutathione synthesis pathway. We found that α2-containing GABAA receptors on D2-receptor-positive but not on D1-receptor-positive neurons promote resiliency to chronic social defeat stress, as reflected in social interaction tests. The pro-resiliency effects of α2-containing GABAA receptors on D2-receptor-positive neurons do not appear to be directly related to alterations in anxiety-like behavior, as reflected in the elevated plus-maze, light-dark box, and novel open field tests. Increases in indices of oxidative stress-reflected by increases in cystathionine levels and reductions in GSH/GSSG ratios-were found in the NAc and prefrontal cortex but not in the hippocampus of mice lacking α2-containing GABAA receptors. We conclude that α2-containing GABAA receptors within specific brain areas and cell populations promote stress resiliency independently of direct effects on anxiety-like behaviors. A potential mechanism contributing to this increased resiliency is the protection that α2-containing GABAA receptors provide against oxidative stress in NAc and the prefrontal cortex.


Assuntos
Ansiedade , Receptores de GABA-A/metabolismo , Receptores de GABA , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Dopamina D1/metabolismo , Ácido gama-Aminobutírico
2.
BMC Res Notes ; 13(1): 384, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32799930

RESUMO

OBJECTIVE: Selective kappa opioid receptor (KOR) agonists were shown to produce a dose-dependent depression of brain-stimulation reward (BSR) in the rat intracranial self-stimulation (ICSS) tests. However, limited studies using mice produced less conclusive results. Here the effects of U50,488H were re-examined on BSR in mice with a larger cohort of animals. RESULTS: Forty C57BL/6J male mice were implanted with the electrodes in medial forebrain bundle. About a week after surgery, mice were subject to ICSS training. Only eighteen passed the two-phase procedures, at which point they readily spun the wheels to obtain reinforcing effect of BSR, and were used for the ICSS tests. Compared with saline (s.c.), U50,488H (2 mg/kg, s.c.) did not have effects on the BSR thresholds within 1 h post-treatment, while it decreased the maximum wheel-spinning rates in a time-dependent manner. In contrast, cocaine (5 mg/kg, s.c.) decreased the BSR thresholds time-dependently without affecting the maximum wheel-spinning rates in the same cohort of mice, demonstrating the validity of our mouse ICSS models. For comparison, U50,488H (2 mg/kg, s.c.) induced significant conditioned place aversion (CPA) in a different cohort of mice without surgeries. Thus, ICSS may not be an appropriate test for KOR agonist-induced aversion in mice.


Assuntos
Receptores Opioides kappa , Recompensa , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Animais , Encéfalo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Receptores Opioides kappa/metabolismo
3.
Neuropsychopharmacology ; 44(5): 939-949, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30082888

RESUMO

Kappa opioid receptor (KOR) agonists produce analgesic and anti-pruritic effects, but their clinical application was limited by dysphoria and hallucinations. Nalfurafine, a clinically used KOR agonist, does not cause dysphoria or hallucinations at therapeutic doses in humans. We found that in CD-1 mice nalfurafine produced analgesic and anti-scratch effects dose-dependently, like the prototypic KOR agonist U50,488H. In contrast, unlike U50,488H, nalfurafine caused no aversion, anhedonia, or sedation or and a low level of motor incoordination at the effective analgesia and anti-scratch doses. Thus, we established a mouse model that recapitulated important aspects of the clinical observations. We then employed a phosphoproteomics approach to investigate mechanisms underlying differential KOR-mediated effects. A large-scale mass spectrometry (MS)-based analysis on brains revealed that nalfurafine perturbed phosphoproteomes differently from U50,488H in a brain-region specific manner after 30-min treatment. In particular, U50,488H and nalfurafine imparted phosphorylation changes to proteins found in different cellular components or signaling pathways in different brain regions. Notably, we observed that U50,488H, but not nalfurafine, activated the mammalian target of rapamycin (mTOR) pathway in the striatum and cortex. Inhibition of the mTOR pathway by rapamycin abolished U50,488H-induced aversion, without affecting analgesic, anti-scratch, and sedative effects and motor incoordination. The results indicate that the mTOR pathway is involved in KOR agonist-induced aversion. This is the first demonstration that phosphoproteomics can be applied to agonist-specific signaling of G protein-coupled receptors (GPCRs) in mouse brains to unravel pharmacologically important pathways. Furthermore, this is one of the first two reports that the mTOR pathway mediates aversion caused by KOR activation.


Assuntos
(trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Analgésicos não Narcóticos/farmacologia , Antipruriginosos/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Morfinanos/farmacologia , Receptores Opioides kappa/agonistas , Transdução de Sinais/efeitos dos fármacos , Compostos de Espiro/farmacologia , Serina-Treonina Quinases TOR/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nociceptividade/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteômica
4.
ACS Chem Neurosci ; 9(10): 2379-2394, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29714473

RESUMO

Cathinone is a plant alkaloid found in khat leaves of perennial shrubs grown in East Africa. Similar to cocaine, cathinone elicits psychostimulant effects which are in part attributed to its amphetamine-like structure. Around 2010, home laboratories began altering the parent structure of cathinone to synthesize derivatives with mechanisms of action, potencies, and pharmacokinetics permitting high abuse potential and toxicity. These "synthetic cathinones" include 4-methylmethcathinone (mephedrone), 3,4-methylenedioxypyrovalerone (MDPV), and the empathogenic agent 3,4-methylenedioxymethcathinone (methylone) which collectively gained international popularity following aggressive online marketing as well as availability in various retail outlets. Case reports made clear the health risks associated with these agents and, in 2012, the Drug Enforcement Agency of the United States placed a series of synthetic cathinones on Schedule I under emergency order. Mechanistically, cathinone and synthetic derivatives work by augmenting monoamine transmission through release facilitation and/or presynaptic transport inhibition. Animal studies confirm the rewarding and reinforcing properties of synthetic cathinones by utilizing self-administration, place conditioning, and intracranial self-stimulation assays and additionally show persistent neuropathological features which demonstrate a clear need to better understand this class of drugs. This Review will thus detail (i) historical context of cathinone use and the rise of "dark" synthetic derivatives, (ii) structural features and mechanisms of synthetic cathinones, (iii) behavioral effects observed clinically and in animals under controlled laboratory conditions, and (iv) neurotransmitters and circuits that may be targeted to manage synthetic cathinone abuse in humans.


Assuntos
Alcaloides/química , Alcaloides/farmacologia , Estimulantes do Sistema Nervoso Central/química , Estimulantes do Sistema Nervoso Central/farmacologia , Alcaloides/história , Animais , Comportamento Animal/efeitos dos fármacos , Benzodioxóis/química , Benzodioxóis/história , Benzodioxóis/farmacologia , Temperatura Corporal/efeitos dos fármacos , Catha/química , Estimulantes do Sistema Nervoso Central/história , Dopamina/metabolismo , História do Século XXI , História Medieval , Humanos , Locomoção/efeitos dos fármacos , Metanfetamina/análogos & derivados , Metanfetamina/química , Metanfetamina/história , Metanfetamina/farmacologia , Pirrolidinas/química , Pirrolidinas/história , Pirrolidinas/farmacologia , Serotonina/metabolismo , Transtornos Relacionados ao Uso de Substâncias , Transmissão Sináptica/efeitos dos fármacos , Catinona Sintética
5.
Addict Biol ; 23(1): 247-255, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28419646

RESUMO

Orexins ('hypocretins') are peptides produced by neurons of the hypothalamus that project to structures implicated in reward and emotion processing. Converging evidence demonstrates functional roles of orexin signaling in arousal, sleep/wakefulness and motivated behaviors for natural and drug rewards. Suvorexant, a dual orexin receptor antagonist, recently received approval from the US Food and Drug Administration to treat insomnia. In Experiment 1, rats self-administered cocaine under a progressive-ratio schedule of reinforcement and the effects of suvorexant on motivation to self-administer cocaine were measured. In Experiment 2, the effects of suvorexant on cocaine reward were assessed by using a place conditioning paradigm, and 50-kHz ultrasonic vocalizations were also recorded to track changes in hedonic reactivity to cocaine. To rule out potentially confounding effects of suvorexant-induced somnolence, locomotor activity was also measured. In Experiment 3, the effects of suvorexant on cocaine-evoked elevations in ventral striatal dopamine were examined. Data reveal that suvorexant (i) reduced the number of cocaine infusions earned during progressive-ratio self-administration; (ii) attenuated initial positive hedonic reactivity to cocaine and prevented cocaine place preference; (iii) did not affect cocaine-induced hyperlocomotion and (iv) reduced cocaine-induced elevations in extracellular ventral striatal dopamine. The present study examined the therapeutic potential of suvorexant in rodent models of cocaine use disorder. These results contribute toward a growing literature supporting therapeutic roles of orexin receptor antagonists in treating substance use disorders.


Assuntos
Azepinas/farmacologia , Comportamento Animal/efeitos dos fármacos , Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Motivação/efeitos dos fármacos , Antagonistas dos Receptores de Orexina/farmacologia , Triazóis/farmacologia , Estriado Ventral/efeitos dos fármacos , Animais , Cocaína/farmacologia , Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Locomoção/efeitos dos fármacos , Masculino , Ratos , Reforço Psicológico , Recompensa , Autoadministração , Estriado Ventral/metabolismo
6.
Addict Biol ; 23(1): 102-110, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27910188

RESUMO

Abuse of synthetic psychostimulants like synthetic cathinones has risen in recent years. 3,4-Methylenedioxypyrovalerone (MDPV) is one such synthetic cathinone that demonstrates a mechanism of action similar to cocaine. Compared to cocaine, MDPV is more potent at blocking dopamine and norepinephrine reuptake and is readily self-administered by rodents. The present study compared the rewarding and reinforcing properties of MDPV and cocaine using systemic injection dose-response and self-administration models. Fifty kilohertz ultrasonic vocalizations (USVs) were recorded as an index of positive affect throughout experiments. In Experiment 1, MDPV and cocaine dose-dependently elicited 50-kHz USVs upon systemic injection, but MDPV increased USVs at greater rates and with greater persistence relative to cocaine. In Experiment 2, latency to begin MDPV self-administration was shorter than latency to begin cocaine self-administration, and self-administered MDPV elicited greater and more persistent rates of 50-kHz USVs versus cocaine. MDPV-elicited 50-kHz USVs were sustained over the course of drug load-up whereas cocaine-elicited USVs waned following initial infusions. Notably, we observed a robust presence of context-elicited 50-kHz USVs from both MDPV and cocaine self-administering rats. Collectively, these data suggest that MDPV has powerfully rewarding and reinforcing effects relative to cocaine at one-tenth doses. Consistent with prior work, we additionally interpret these data in supporting that MDPV has significant abuse risk based on its potency and subjectively positive effects. Future studies will be needed to better refine therapeutic strategies targeted at reducing the rewarding effects of cathinone analogs in efforts to ultimately reduce abuse liability.


Assuntos
Benzodioxóis/farmacologia , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Pirrolidinas/farmacologia , Recompensa , Vocalização Animal/efeitos dos fármacos , Animais , Benzodioxóis/administração & dosagem , Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Masculino , Pirrolidinas/administração & dosagem , Ratos , Reforço Psicológico , Autoadministração , Ondas Ultrassônicas , Catinona Sintética
7.
Neuropsychopharmacology ; 43(5): 1001-1009, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28741623

RESUMO

Hypothalamic hypocretin (orexin) peptides mediate arousal, attention, and reward processing. Fibers containing orexins project to brain structures that govern motivated behavior, including the ventral tegmental area (VTA). A number of psychiatric conditions, including attention deficit hyperactivity disorder (ADHD) and substance use disorders, are characterized by deficits in impulse control, however the relationship between orexin and impulsive behavior is incompletely characterized. The effects of systemic or centrally administered orexin receptor (OXR) antagonists on measures of impulsive-like behavior in rats were evaluated using the five-choice serial reaction time task (5-CSRTT) and delay discounting procedures. These paradigms were also used to test the capacity of OXR antagonists to attenuate acute cocaine-evoked impulsivity. Finally, immunohistochemistry and calcium imaging were used to assess potential cellular mechanisms by which OXR blockade may influence motor impulsivity. Suvorexant, a dual (OX1/2R) orexin receptor antagonist, reduced cocaine-evoked premature responses in 5-CSRTT when administered systemically or directly into VTA. Neither suvorexant nor OX1R- or OX2R-selective compounds (SB334867 or TCS-OX2-29, respectively) altered delay discounting. Finally, suvorexant did not alter Fos-immunoreactivity within tyrosine hydroxylase-immunolabeled neurons of VTA, but did attenuate cocaine- and orexin-induced increases in calcium transient amplitude within neurons of VTA. Results from the present studies suggest potential therapeutic utility of OXR antagonists in reducing psychostimulant-induced motor impulsivity. These findings also support the view that orexin transmission is closely involved in executive function in normal and pathological conditions.


Assuntos
Azepinas/farmacologia , Cocaína/antagonistas & inibidores , Cocaína/farmacologia , Comportamento Impulsivo/efeitos dos fármacos , Antagonistas dos Receptores de Orexina/farmacologia , Triazóis/farmacologia , Animais , Benzoxazóis/farmacologia , Comportamento de Escolha , Desvalorização pelo Atraso/efeitos dos fármacos , Isoquinolinas/farmacologia , Masculino , Microinjeções , Naftiridinas , Orexinas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Piridinas/farmacologia , Ratos , Ureia/análogos & derivados , Ureia/farmacologia , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
8.
ACS Chem Neurosci ; 8(12): 2648-2654, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28885007

RESUMO

Mephedrone (4-methylmethcathinone (4-MMC)) (MEPH) is a new psychoactive substance (NPS) of the synthetic cathinone class. MEPH has a chiral center and exists as two enantiomers (R-,S-MEPH), yet stereospecific effects of MEPH have not been extensively investigated in preclinical assays. Because significant behavioral and neurochemical differences can exist between enantiomers, probing effects of stereochemistry on biological activity enables separation of adverse and therapeutic effects. Our prior work showed that R-MEPH, relative to S-MEPH, produced greater locomotor activation, place preference, and facilitation of brain reward thresholds in rodents. The present study sought to determine if MEPH enantiomers display stereospecific reward and reinforcement in rat self-administration assays. In Experiment 1, rats were trained to self-administer racemic MEPH (0.50 mg/kg/inf), and dose substitution effects of R-MEPH (0.50 mg/kg/inf) and S-MEPH (0.25, 0.50, 2.00 mg/kg/inf) were examined. In Experiment 2, separate rats were trained to self-administer R-MEPH (0.25, 0.50, 2.00 mg/kg/inf) or S-MEPH (0.25, 0.50, 2.00 mg/kg/inf) and were thereafter evaluated under progressive-ratio access conditions. Within this cohort, 50 kHz ultrasonic vocalizations (USVs) were recorded to measure potential differences in subjective positive affect associated with MEPH enantiomer self-administration. We identified enantiomer- and dose-dependent effects on infusions earned during self-administration following acquisition of racemic MEPH, with greatest infusions under low-effort, fixed-ratio 1 access conditions from low-dose S-MEPH self-administration. When taxed with progressive-ratio access conditions, rats trained to self-administer R-MEPH showed higher break points than those of rats trained to self-administer S-MEPH. Additionally, R-MEPH elicited greatest rates of 50 kHz USVs compared to S-MEPH. Taken together, these data suggest that the R-enantiomer of MEPH is primarily responsible for the rewarding, reinforcing, and motivational properties of racemic MEPH, which increases our understanding of stereospecific preferences pertaining to MEPH abuse.


Assuntos
Metanfetamina/análogos & derivados , Motivação/efeitos dos fármacos , Motivação/fisiologia , Recompensa , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Relação Dose-Resposta a Droga , Masculino , Metanfetamina/administração & dosagem , Metanfetamina/química , Ratos , Ratos Sprague-Dawley , Autoadministração , Estereoisomerismo , Relação Estrutura-Atividade , Resultado do Tratamento
9.
Psychopharmacology (Berl) ; 234(21): 3207-3215, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28786030

RESUMO

RATIONALE: Synthetic psychostimulant abuse, including cathinone-derived 3,4-methylenedioxypyrovalerone (MDPV), continues to increase in many countries. Similar to cocaine but with greater potency, MDPV elicits a transient sympathomimetic response by blocking cellular uptake of dopamine (DA) and norepinephrine (NE)-administration in some users is reported as euphoria-inducing much like cocaine and amphetamine. Pharmacological agents that disrupt excitatory transmission onto midbrain DA-producing neurons, including hypothalamic hypocretin/orexin (hcrt/ox) receptor antagonists, present attractive targets to aide abstinence maintenance by reducing psychostimulant-associated reward and reinforcement. OBJECTIVE: The present study sought to assess the degree to which suvorexant, a dual hcrt/ox receptor antagonist, influences drug-taking as well as ultrasonic vocalizations (USVs) associated with MDPV self-administration. METHODS: Rats were trained to self-administer MDPV (~0.03 mg/kg/inf, 3-s) for 14 days under a fixed-ratio 1 schedule of reinforcement, and effects of suvorexant (0, 3, 10, 30 mg/kg, i.p.) on drug-taking was assessed. USVs were recorded during a 30-min pre-lever period as well as during 2-h of MDPV self-administration. RESULTS: We observed that suvorexant modestly suppressed the number of MDPV infusions earned. Notably, we observed that suvorexant reduced 50-kHz USVs associated with pre- and post-lever time-points but did not noticeably alter call type profiles. Upon comparison of the two measures, we observed trending positive associations between suvorexant-induced changes in drug-taking and 50-kHz USVs. CONCLUSIONS: Results from this exploratory study provide support for the following: (1) studying how suvorexant may provide benefit to humans with stimulant use disorders, (2) identifying a potential role for orexin transmission in cathinone abuse, and (3) further interrogating the potential utility of rat USVs to predict drug consumption in preclinical models of substance use disorders.


Assuntos
Azepinas/farmacologia , Benzodioxóis/administração & dosagem , Fissura/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Mesencéfalo/efeitos dos fármacos , Receptores de Orexina/efeitos dos fármacos , Pirrolidinas/administração & dosagem , Triazóis/farmacologia , Vocalização Animal/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Infusões Intravenosas , Masculino , Ratos , Ratos Sprague-Dawley , Autoadministração , Catinona Sintética
10.
Behav Pharmacol ; 28(6): 485-488, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28704277

RESUMO

Nicotine is the addictive compound in tobacco products which exerts psychosomatic effects that contribute to abuse and to low rates of abstinence in treatment-seeking smokers. At present, the most successful smoking cessation aide helps one in four individuals quit smoking at 1 year postcessation. New adjunctive therapies are needed to improve status of smoking-related public health crises, and ß-lactam antibiotics are one class of potential therapies as they favorably augment extrasynaptic glutamate clearance. Our study used two-chamber place conditioning to assess effects of ceftriaxone (CTX) on persistence of conditioned nicotine reward. Rats were conditioned to associate nicotine (0.4 mg/kg, subcutaneous) with one context and vehicle with an alternative context. After initial post-test, rats received either daily ceftriaxone (200 mg/kg, intraperitoneal) or saline. All rats showed nicotine place preference during post-test 1. CTX-treated rats meeting extinction criterion by post-test 7 showed significantly reduced preference for the nicotine-paired context during post-test 2 compared with vehicle-treated rats. We interpret these data to support the further study of CTX as a smoking cessation aide. Our results suggest that CTX reduces persistence of conditioned nicotine reward and may be helpful for improving abstinence rates in a subset of treatment-seeking smokers.


Assuntos
Ceftriaxona/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Nicotina/farmacologia , Animais , Condicionamento Psicológico/efeitos dos fármacos , Masculino , Nicotina/metabolismo , Agonistas Nicotínicos/farmacologia , Ratos , Ratos Sprague-Dawley , Recompensa , Fumar , Abandono do Hábito de Fumar/métodos , Tabagismo/psicologia
11.
Behav Brain Res ; 314: 226-33, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27491589

RESUMO

Tobacco smoking is the leading cause of preventable death in the United States. Nicotine is the principal psychoactive ingredient in tobacco that causes addiction. The structures governing nicotine addiction, including those underlying withdrawal, are still being explored. Nicotine withdrawal is characterized by negative affective and cognitive symptoms that enhance relapse susceptibility, and suppressed dopaminergic transmission from ventral tegmental area (VTA) to target structures underlies behavioral symptoms of nicotine withdrawal. Agonist and partial agonist therapies help 1 in 4 treatment-seeking smokers at one-year post-cessation, and new targets are needed to more effectively aid smokers attempting to quit. Hypothalamic orexin/hypocretin neurons send excitatory projections to dopamine (DA)-producing neurons of VTA and modulate mesoaccumbal DA release. The effects of nicotinic receptor blockade, which is commonly used to precipitate withdrawal, on orexin neurons remain poorly investigated and present an attractive target for intervention. The present study sought to investigate the effects of nicotinic receptor blockade on hypothalamic orexin neurons using mecamylamine to precipitate withdrawal in rats. Separate groups of rats were treated with either chronic nicotine or saline for 7-days at which point effects of mecamylamine or saline on somatic signs and anxiety-like behavior were assessed. Finally, tissue from rats was harvested for immunofluorescent analysis of Fos within orexin neurons. Results demonstrate that nicotinic receptor blockade leads to reduced orexin cell activity, as indicated by lowered Fos-immunoreactivity, and suggest that this underlying cellular activity may be associated with symptoms of nicotine withdrawal as effects were most prominently observed in rats given chronic nicotine. We conclude from this study that orexin transmission becomes suppressed in rats upon nicotinic receptor blockade, and that behavioral symptoms associated with nicotine withdrawal may be aided by intervention upon orexinergic transmission.


Assuntos
Neurônios/efeitos dos fármacos , Antagonistas Nicotínicos/farmacologia , Orexinas/metabolismo , Receptores Nicotínicos/efeitos dos fármacos , Animais , Dopamina/farmacologia , Imuno-Histoquímica/métodos , Masculino , Neurônios/metabolismo , Nicotina/farmacologia , Proteínas Oncogênicas v-fos/metabolismo , Ratos Sprague-Dawley , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
12.
Br J Pharmacol ; 172(2): 334-48, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24641197

RESUMO

UNLABELLED: Addiction is a devastating disorder that affects 15.3 million people worldwide. While prevalent, few effective treatments exist. Orexin receptors have been proposed as a potential target for anti-craving medications. Orexins, also known as hypocretins, are neuropeptides produced in neurons of the lateral and dorsomedial hypothalamus and perifornical area, which project widely throughout the brain. The absence of orexins in rodents and humans leads to narcolepsy. However, orexins also have an established role in reward seeking. This review will discuss some of the original studies describing the roles of the orexins in reward seeking as well as specific works that were presented at the 2013 International Narcotics Research Conference. Orexin signalling can promote drug-induced plasticity of glutamatergic synapses onto dopamine neurons of the ventral tegmental area (VTA), a brain region implicated in motivated behaviour. Additional evidence suggests that orexin signalling can also promote drug seeking by initiating an endocannabinoid-mediated synaptic depression of GABAergic inputs to the VTA, and thereby disinhibiting dopaminergic neurons. Orexin neurons co-express the inhibitory opioid peptide dynorphin. It has been proposed that orexin in the VTA may not mediate reward per se, but rather occludes the 'anti-reward' effects of dynorphin. Finally, orexin signalling in the prefrontal cortex and the central amygdala is implicated in reinstatement of reward seeking. This review will highlight recent work describing the role of orexin signalling in cellular processes underlying addiction-related behaviours and propose novel hypotheses for the mechanisms by which orexin signalling may impart drug seeking. LINKED ARTICLES: This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neuropeptídeos/metabolismo , Recompensa , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Animais , Dinorfinas/metabolismo , Etanol/administração & dosagem , Humanos , Hipotálamo/metabolismo , Receptores de Orexina/metabolismo , Orexinas , Área Tegmentar Ventral/metabolismo
13.
Proc Natl Acad Sci U S A ; 111(16): E1648-55, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24706819

RESUMO

Hypocretin (orexin) and dynorphin are neuropeptides with opposing actions on motivated behavior. Orexin is implicated in states of arousal and reward, whereas dynorphin is implicated in depressive-like states. We show that, despite their opposing actions, these peptides are packaged in the same synaptic vesicles within the hypothalamus. Disruption of orexin function blunts the rewarding effects of lateral hypothalamic (LH) stimulation, eliminates cocaine-induced impulsivity, and reduces cocaine self-administration. Concomitant disruption of dynorphin function reverses these behavioral changes. We also show that orexin and dynorphin have opposing actions on excitability of ventral tegmental area (VTA) dopamine neurons, a prominent target of orexin-containing neurons, and that intra-VTA orexin antagonism causes decreases in cocaine self-administration and LH self-stimulation that are reversed by dynorphin antagonism. Our findings identify a unique cellular process by which orexin can occlude the reward threshold-elevating effects of coreleased dynorphin and thereby act in a permissive fashion to facilitate reward.


Assuntos
Dinorfinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , Recompensa , Área Tegmentar Ventral/metabolismo , Animais , Cocaína/administração & dosagem , Cocaína/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Dinorfinas/antagonistas & inibidores , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Comportamento Impulsivo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/antagonistas & inibidores , Receptores de Orexina/metabolismo , Orexinas , Autoadministração , Transmissão Sináptica/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos
14.
Biol Psychiatry ; 76(7): 550-8, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24495460

RESUMO

BACKGROUND: Chronic social defeat stress (CSDS) produces persistent behavioral adaptations in mice. In many behavioral assays, it can be difficult to determine if these adaptations reflect core signs of depression. We designed studies to characterize the effects of CSDS on sensitivity to reward because anhedonia (reduced sensitivity to reward) is a defining characteristic of depressive disorders in humans. We also examined the effects of striatal ΔFosB overexpression and the N-methyl-D-aspartate receptor antagonist ketamine, both of which promote resilience, on CSDS-induced alterations in reward function and social interaction. METHODS: Intracranial self-stimulation (ICSS) was used to quantify CSDS-induced changes in reward function. Mice were implanted with lateral hypothalamic electrodes, and ICSS thresholds were measured after each of 10 daily CSDS sessions and during a 5-day recovery period. We also examined if acute intraperitoneal administration of ketamine (2.5-20 mg/kg) reverses CSDS-induced effects on reward or, in separate mice, social interaction. RESULTS: ICSS thresholds were increased by CSDS, indicating decreases in the rewarding impact of lateral hypothalamic stimulation (anhedonia). This effect was attenuated in mice overexpressing ∆FosB in striatum, consistent with pro-resilient actions of this transcription factor. High, but not low, doses of ketamine administered after completion of the CSDS regimen attenuated social avoidance in defeated mice, although this effect was transient. Ketamine did not block CSDS-induced anhedonia in the ICSS test. CONCLUSIONS: This study found that CSDS triggers persistent anhedonia and confirms that ΔFosB overexpression produces stress resilience. The findings of this study also indicate that acute administration of ketamine fails to attenuate CSDS-induced anhedonia despite reducing other depression-related behavioral abnormalities.


Assuntos
Anedonia/efeitos dos fármacos , Anedonia/fisiologia , Antidepressivos/farmacologia , Corpo Estriado/metabolismo , Ketamina/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estresse Psicológico/fisiopatologia , Animais , Estimulação Elétrica , Hipotálamo/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Recompensa , Autoestimulação , Comportamento Social
15.
Cold Spring Harb Perspect Med ; 3(2): a012005, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23293139

RESUMO

Psychostimulants such as amphetamine and cocaine are believed to produce dependence by causing rapid, supraphysiological elevations in synaptic dopamine (DA) within the nucleus accumbens (NAc) (Volkow et al. 2009, Neuropharmacology 56: 3-8). These changes in forebrain DA transmission are similar to those evoked by natural reinforcers (Louilot et al. 1991, Brain Res 553: 313-317; Roitman et al. 2004, J Neurosci 24: 1265-1271), but are of greater magnitude and longer duration. Repeated drug exposure causes compensatory neuroadaptations in neurons of the NAc, some of which may modulate excess DA in a homeostatic fashion. One such adaptation is the activation of the transcription factor CREB (cAMP response element-binding protein) within neurons of the NAc. Although elevated levels of transcriptionally active CREB appear to attenuate DA transmission by increasing expression of the endogenous κ opioid receptor (KOR) ligand dynorphin, increased dynorphin transmission may ultimately have undesirable effects that contribute to drug withdrawal states as well as comorbid psychiatric illnesses such as depression. This state may prompt a return to drug use to mitigate the adverse effects of withdrawal. This article summarizes our current understanding of how CREB and dynorphin contribute to the dysregulation of motivation and describes novel therapeutic strategies that derive from preclinical research in this area.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Dinorfinas/fisiologia , Motivação/fisiologia , Núcleo Accumbens/fisiologia , Transtornos Relacionados ao Uso de Substâncias/psicologia , Animais , Cocaína/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Inibidores da Captação de Dopamina/farmacologia , Regulação da Expressão Gênica , Humanos , Mamíferos , Morfina/farmacologia , Entorpecentes/farmacologia , Receptores de Neurotransmissores/fisiologia , Recompensa , Transdução de Sinais/fisiologia , Transtornos Relacionados ao Uso de Substâncias/reabilitação , Ativação Transcricional/fisiologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-23269344

RESUMO

Tat (Trans-activator of transcription) is implicated in the neuropathogenesis of HIV-1 infection and known to contribute to neuronal damage and learning and memory impairments. However, direct neuroanatomical demonstration of Tat pathobiology is limited. GT-tg bigenic mice with a doxycycline (Dox)-inducible and brain-selective tat gene were used to test the hypothesis that conditional induction of Tat activity in brain can induce gray matter density abnormalities. Ultra high spatial resolution ex vivo magnetic resonance imaging (MRI) combined with a voxel based morphometry (VBM) analysis revealed gray matter density reductions in the sublenticular extended amygdala, the amygdala, the amygdala-hippocampal area, piriform and peri-/entorhinal cortices, and hypothalamus, in Tat-expressing GT-tg mice compared to Dox-treated C57Bl/6J mice. These neuroanatomical abnormalities are consistent with regions expected to be abnormal based on behavioral deficits exhibited by Tat-expressing mice (Carey et al., 2012). These experiments provide the first neuroimaging evidence that conditional Tat protein expression in the GT-tg bigenic mouse model alters brain structure. The findings warrant future studies to further characterize effects of conditional Tat expression on brain structure. Such studies may improve our understanding of the neurological underpinnings of neuroAIDS and the neurodegeneration associated with HIV-1 infection, potentially leading to new treatments.


Assuntos
Química Encefálica/fisiologia , Encéfalo/patologia , Produtos do Gene tat/biossíntese , Complexo AIDS Demência/psicologia , Animais , Animais Geneticamente Modificados , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Química Encefálica/efeitos dos fármacos , Doxiciclina/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/efeitos dos fármacos , Tetraciclina/farmacologia
17.
Neuropsychopharmacology ; 37(11): 2531-40, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22763624

RESUMO

Benzodiazepines such as diazepam are widely prescribed as anxiolytics and sleep aids. Continued use of benzodiazepines, however, can lead to addiction in vulnerable individuals. Here, we investigate the neural mechanisms of the behavioral effects of benzodiazepines using the intracranial self-stimulation (ICSS) test, a procedure with which the reward-enhancing effects of these drugs can be measured. Benzodiazepines bind nonselectively to several different GABA(A) receptor subtypes. To elucidate the α subunit(s) responsible for the reward-enhancing effects of benzodiazepines, we examined mice carrying a histidine-to-arginine point mutation in the α1, α2, or α3 subunit, which renders the targeted subunit nonresponsive to diazepam, other benzodiazepines and zolpidem. In wild-type and α1-point-mutated mice, diazepam caused a dose-dependent reduction in ICSS thresholds (reflecting a reward-enhancing effect) that is comparable to the reduction observed following cocaine administration. This effect was abolished in α2- and α3-point-mutant mice, suggesting that these subunits are necessary for the reward-enhancing action of diazepam. α2 Subunits appear to be particularly important, since diazepam increased ICSS thresholds (reflecting an aversive-like effect) in α2-point-mutant animals. Zolpidem, an α1-preferring benzodiazepine-site agonist, had no reward-enhancing effects in any genotype. Our findings implicate α2 and α3 subunit containing GABA(A) receptors as key mediators of the reward-related effects of benzodiazepines. This finding has important implications for the development of new medications that retain the therapeutic effects of benzodiazepines but lack abuse liability.


Assuntos
Comportamento Animal/efeitos dos fármacos , Benzodiazepinas/farmacologia , Encéfalo/efeitos dos fármacos , Mutação Puntual/genética , Receptores de GABA-A/fisiologia , Recompensa , Análise de Variância , Animais , Comportamento Animal/fisiologia , Encéfalo/fisiologia , Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Relação Dose-Resposta a Droga , Estimulação Elétrica , GABAérgicos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Subunidades Proteicas/genética , Receptores de GABA-A/genética , Esquema de Reforço , Autoestimulação/efeitos dos fármacos
18.
Biol Psychiatry ; 71(1): 44-50, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21962331

RESUMO

BACKGROUND: Elevated expression of the transcription factor ΔFosB accompanies repeated exposure to drugs of abuse, particularly in brain areas associated with reward and motivation (e.g., nucleus accumbens). The persistent effects of ΔFosB on target genes might play an important role in the development and expression of behavioral adaptations that characterize addiction. This study examines how ΔFosB influences the responsiveness of the brain reward system to rewarding and aversive drugs. METHODS: We used the intracranial self-stimulation paradigm to assess the effects of cocaine in transgenic mice with inducible overexpression of ΔFosB in striatal regions (including nucleus accumbens and dorsal striatum). Mice implanted with lateral hypothalamic stimulating electrodes were trained with the "rate-frequency" procedure for intracranial self-stimulation to determine the frequency at which stimulation becomes rewarding (threshold). RESULTS: A dose-effect analysis of cocaine effects revealed that mice overexpressing ΔFosB show increased sensitivity to the rewarding (threshold-lowering) effects of the drug, compared with littermate control subjects. Interestingly, mice overexpressing ΔFosB were also less sensitive to the pro-depressive (threshold-elevating) effects of U50488, a kappa-opioid agonist known to induce dysphoria and stress-like effects in rodents. CONCLUSIONS: These data suggest that induction of ΔFosB in striatal regions has two important behavioral consequences-increased sensitivity to drug reward, and reduced sensitivity to aversion-producing a complex phenotype that shows signs of vulnerability to addiction as well as resilience to stress.


Assuntos
(trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/administração & dosagem , Anestésicos Locais/administração & dosagem , Cocaína/administração & dosagem , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores Opioides kappa/agonistas , Recompensa , Animais , Biofísica , Condicionamento Operante/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/fisiologia , Masculino , Feixe Prosencefálico Mediano/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Autoestimulação
19.
Neuron ; 71(3): 383-5, 2011 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-21835335

RESUMO

In this issue, Bruchas et al. (2011) uncover a novel stress-induced p38α MAPK signaling cascade within serotonergic neurons of the dorsal raphe nucleus that mediates depressive and drug-seeking behaviors. Their findings have potentially important implications for medication development.

20.
Biol Psychiatry ; 70(5): 425-33, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21531393

RESUMO

BACKGROUND: The kappa opioid receptor (KOR) system contributes to the prodepressive and aversive consequences of stress and is implicated in the facilitation of conditioned fear and anxiety in rodents. Here, we sought to identify neural circuits that mediate KOR system effects on fear and anxiety in rats. METHODS: We assessed whether fear conditioning induces plasticity in KOR or dynorphin (the endogenous KOR ligand) messenger RNA (mRNA) expression in the basolateral (BLA) and central (CeA) nuclei of the amygdala, hippocampus, or striatum. We then assessed whether microinfusions of the KOR antagonist JDTic (0-10 µg/side) into the BLA or CeA affect the expression of conditioned fear or anxiety. Finally, we examined whether fear extinction induces plasticity in KOR mRNA expression that relates to the quality of fear extinction. RESULTS: Fear conditioning upregulated KOR mRNA in the BLA by 65% and downregulated it in the striatum by 22%, without affecting KOR levels in the CeA or hippocampus, or dynorphin levels in any region. KOR antagonism in either the BLA or CeA decreased conditioned fear in the fear-potentiated startle paradigm, whereas KOR antagonism in the BLA, but not the CeA, produced anxiolytic-like effects in the elevated plus maze. Effective fear extinction was associated with a 67% reduction in KOR mRNA in the BLA. CONCLUSIONS: These findings suggest that fear conditioning and extinction dynamically regulate KOR expression in the BLA and provide evidence that the BLA and CeA are important neural substrates mediating the anxiolytic-like effects of KOR antagonists in models of fear and anxiety.


Assuntos
Tonsila do Cerebelo/metabolismo , Ansiedade/metabolismo , Condicionamento Psicológico/fisiologia , Dinorfinas/fisiologia , Medo/fisiologia , Receptores Opioides kappa/fisiologia , Transdução de Sinais/fisiologia , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Condicionamento Psicológico/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Extinção Psicológica/fisiologia , Medo/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Microinjeções , Piperidinas/administração & dosagem , Piperidinas/farmacologia , Ratos , Receptores Opioides kappa/antagonistas & inibidores , Receptores Opioides kappa/biossíntese , Reflexo de Sobressalto/efeitos dos fármacos , Reflexo de Sobressalto/fisiologia , Transdução de Sinais/efeitos dos fármacos , Tetra-Hidroisoquinolinas/administração & dosagem , Tetra-Hidroisoquinolinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA