Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 161: 213904, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38805763

RESUMO

Engineered calcium carbonate (CaCO3) particles are extensively used as drug delivery systems due to their availability, biological compatibility, biodegradability, and cost-effective production. The synthesis procedure of CaCO3 particles, however, suffers from poor reproducibility. Furthermore, reducing the size of CaCO3 particles to <100 nm requires the use of additives in the reaction, which increases the total reaction time. Here we propose on-chip synthesis and loading of nanoscaled CaCO3 particles using microfluidics. After the development and fabrication of a microfluidic device, we optimized the synthesis of CaCO3 NPs by varying different parameters such as flow rates in the microfluidic channels, concentration of reagents, and the reaction time. To prove the versatility of the used synthesis route, we performed single and double loading of CaCO3 NPs with various compounds (Doxorubicin, Cy5 or FITC conjugated with BSA, and DNA) using the same microfluidic device. Further, the on-chip loaded CaCO3 NPs were used as carriers to transfer compounds to model cells. We have developed a microfluidic synthesis method that opens up a new pathway for easy on-chip fabrication of functional nanoparticles for clinical use.


Assuntos
Carbonato de Cálcio , Dispositivos Lab-On-A-Chip , Nanopartículas , Carbonato de Cálcio/química , Nanopartículas/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Humanos , Microfluídica/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Portadores de Fármacos/química , Tamanho da Partícula , DNA/química , DNA/administração & dosagem
4.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543058

RESUMO

(1) Background: We aimed to estimate the pooled effectiveness and safety of vaccination in follicular lymphoma (FL) and discuss implications for immunotherapy development. (2) Methods: We included randomized trials (RCTs) of therapeutic vaccines in patients with FL. Progression-free survival (PFS) was the primary outcome. We searched databases (PubMed, Embase, Scopus, Web of Science Core, medRxiv) and registries (PROSPERO, CENTRAL, ClinicalTrials.gov, EuCTR, WHO ICTRP) and conducted online, citation, and manual searches. We assessed risks of bias across outcomes using RoB 2.0 and across studies using ROB-ME and a contour-enhanced funnel plot. (3) Results: Three RCTs were included (813 patients, both previously treated and untreated). Patients with a complete or partial response after chemotherapy were randomized to either a patient-specific recombinant idiotype keyhole limpet hemocyanin (Id-KLH) vaccine plus granulocyte-macrophage colony-stimulating factor (GM-CSF) or placebo immunotherapy (KLH + GM-CSF). Meta-analyses showed that PFS was worse with the vaccine, but not significantly: hazard ratio, 1.09 (95% CI 0.91-1.30). The GRADE certainty of evidence was moderate. Adverse event data were mixed. (4) Conclusions: We are moderately certain that Id-KLH results in little to no difference in PFS in FL. (5) Funding: Russian Science Foundation grant #22-25-00516. (6) Registration: PROSPERO CRD42023457528.

5.
Biomater Sci ; 12(2): 453-467, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38059526

RESUMO

The size of drug carriers strongly affects their biodistribution, tissue penetration, and cellular uptake in vivo. As a result, when such carriers are loaded with therapeutic compounds, their size can influence the treatment outcomes. For internal α-radionuclide therapy, the carrier size is particularly important, because short-range α-emitters should be delivered to tumor volumes at a high dose rate without any side effects, i.e. off-target irradiation and toxicity. In this work, we aim to evaluate and compare the therapeutic efficiency of calcium carbonate (CaCO3) microparticles (MPs, >2 µm) and nanoparticles (NPs, <100 nm) labeled with radium-223 (223Ra) for internal α-radionuclide therapy against 4T1 breast cancer. To do this, we comprehensively study the internalization and penetration efficiency of these MPs and NPs, using 2D and 3D cell cultures. For further therapeutic tests, we develop and modify a chelator-free method for radiolabeling of CaCO3 MPs and NPs with 223Ra, improving their radiolabeling efficiency (>97%) and radiochemical stability (>97%). After intratumoral injection of 223Ra-labeled MPs and NPs, we demonstrate their different therapeutic efficiencies against a 4T1 tumor. In particular, 223Ra-labeled NPs show a tumor inhibition of approximately 85%, which is higher compared to 60% for 223Ra-labeled MPs. As a result, we can conclude that 223Ra-labeled NPs have a more suitable biodistribution within 4T1 tumors compared to 223Ra-labeled MPs. Thus, our study reveals that 223Ra-labeled CaCO3 NPs are highly promising for internal α-radionuclide therapy.


Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/radioterapia , Neoplasias da Mama/patologia , Carbonato de Cálcio/química , Distribuição Tecidual , Portadores de Fármacos/química , Nanopartículas/química , Radioisótopos/uso terapêutico
6.
Nano Lett ; 23(23): 10811-10820, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37988557

RESUMO

Redox-responsive drug delivery systems present a promising avenue for drug delivery due to their ability to leverage the unique redox environment within tumor cells. In this work, we describe a facile and cost-effective one-pot synthesis method for a redox-responsive delivery system based on novel trithiocyanuric acid (TTCA) nanoparticles (NPs). We conduct a thorough investigation of the impact of various synthesis parameters on the morphology, stability, and loading capacity of these NPs. The great drug delivery potential of the system is further demonstrated in vitro and in vivo by using doxorubicin as a model drug. The developed TTCA-PEG NPs show great drug delivery efficiency with minimal toxicity on their own both in vivo and in vitro. The simplicity of this synthesis, along with the promising characteristics of TTCA-PEG NPs, paves the way for new opportunities in the further development of redox-responsive drug delivery systems based on TTCA.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Sistemas de Liberação de Medicamentos/métodos , Doxorrubicina/uso terapêutico , Oxirredução , Portadores de Fármacos
8.
Biomolecules ; 13(11)2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-38002359

RESUMO

mRNA-based therapeutics have been found to be a promising treatment strategy in immunotherapy, gene therapy, and cancer treatments. Effectiveness of mRNA therapeutics depends on the level and duration of a desired protein's expression, which is determined by various cis- and trans-regulatory elements of the mRNA. Sequences of 5' and 3' untranslated regions (UTRs) are responsible for translational efficiency and stability of mRNA. An optimal combination of the regulatory sequences allows researchers to significantly increase the target protein's expression. Using both literature data and previously obtained experimental data, we chose six sequences of 5'UTRs (adenoviral tripartite leader [TPL], HBB, rabbit ß-globin [Rabb], H4C2, Moderna, and Neo2) and five sequences of 3'UTRs (mtRNR-EMCV, mtRNR-AES, mtRNR-mtRNR, BioNTech, and Moderna). By combining them, we constructed 30 in vitro transcribed RNAs encoding firefly luciferase with various combinations of 5'- and 3'UTRs, and the resultant bioluminescence was assessed in the DC2.4 cell line at 4, 8, 24, and 72 h after transfection. The cellular data enabled us to identify the best seven combinations of 5'- and 3'UTRs, whose translational efficiency was then assessed in BALB/c mice. Two combinations of 5'- and 3'UTRs (5'Rabb-3'mtRNR-EMCV and 5'TPL-3'Biontech) led to the most pronounced increase in the luciferase amount in the in vivo experiment in mice. Subsequent analysis of the stability of the mRNA indicated that the increase in luciferase expression is explained primarily by the efficiency of translation, not by the number of RNA molecules. Altogether, these findings suggest that 5'UTR-and-3'UTR combinations 5'Rabb-3'mtRNR- EMCV and 5'TPL-3'Biontech lead to high expression of target proteins and may be considered for use in preventive and therapeutic modalities based on mRNA.


Assuntos
Biossíntese de Proteínas , Camundongos , Animais , Coelhos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Transfecção , Regiões 5' não Traduzidas , Luciferases/genética
9.
Int J Mol Sci ; 24(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37834268

RESUMO

Advances in molecular biology have revolutionized the use of messenger RNA (mRNA) as a therapeutic. The concept of nucleic acid therapy with mRNA originated in 1990 when Wolff et al. reported successful expression of proteins in target organs by direct injection of either plasmid DNA or mRNA. It took decades to bring the transfection efficiency of mRNA closer to that of DNA. The next few decades were dedicated to turning in vitro-transcribed (IVT) mRNA from a promising delivery tool for gene therapy into a full-blown therapeutic modality, which changed the biotech market rapidly. Hundreds of clinical trials are currently underway using mRNA for prophylaxis and therapy of infectious diseases and cancers, in regenerative medicine, and genome editing. The potential of IVT mRNA to induce an innate immune response favors its use for vaccination and immunotherapy. Nonetheless, in non-immunotherapy applications, the intrinsic immunostimulatory activity of mRNA directly hinders the desired therapeutic effect since it can seriously impair the target protein expression. Targeting the same innate immune factors can increase the effectiveness of mRNA therapeutics for some indications and decrease it for others, and vice versa. The review aims to present the innate immunity-related 'barriers' or 'springboards' that may affect the development of immunotherapies and non-immunotherapy applications of mRNA medicines.


Assuntos
DNA , Neoplasias , Humanos , RNA Mensageiro/genética , RNA Mensageiro/uso terapêutico , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Imunidade Inata , Sistema Imunitário/metabolismo
10.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37686471

RESUMO

The behavior and migration of human mesenchymal stromal cells (hMSCs) are focal points of research in the biomedical field. One of the major aspects is potential therapy using hMCS, but at present, the safety of their use is still controversial owing to limited data on changes that occur with hMSCs in the long term. Fluorescent photoconvertible proteins are intensively used today as "gold standard" to mark the individual cells and study single-cell interactions, migration processes, and the formation of pure lines. A crucial disadvantage of this method is the need for genetic modification of the primary culture, which casts doubt on the possibility of exploring the resulting clones in personalized medicine. Here we present a new approach for labeling and tracking hMSCs without genetic modification based on the application of cell-internalizable photoconvertible polyelectrolyte microcapsules (size: 2.6 ± 0.5 µm). These capsules were loaded with rhodamine B, and after thermal treatment, exhibited fluorescent photoconversion properties. Photoconvertible capsules demonstrated low cytotoxicity, did not affect the immunophenotype of the hMSCs, and maintained a high level of fluorescent signal for at least seven days. The developed approach was tested for cell tracking for four days and made it possible to trace the destiny of daughter cells without the need for additional labeling.


Assuntos
Células-Tronco Mesenquimais , Humanos , Cápsulas , Comunicação Celular , Rastreamento de Células , Células Clonais , Corantes
12.
J Control Release ; 359: 400-414, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37315692

RESUMO

The use of nanoparticles (NPs) as delivery vehicles for multiple drugs is an intensively developing area. However, the success of NPs' accumulation in the tumor area for efficient tumor treatment has been recently questioned. Distribution of NPs in a laboratory animal is mainly related to the administration route of NPs and their physicochemical parameters, which significantly affect the delivery efficiency. In this work, we aim to compare the therapeutic efficiency and side effects of the delivery of multiple therapeutic agents with NPs by both intravenous and intratumoral injections. For this, we systematically developed universal nanosized carriers based on calcium carbonate (CaCO3) NPs (< 100 nm) that were co-loaded with a photosensitizer (Chlorin e6, Ce6) and chemotherapeutic agent (doxorubicin, Dox) for combined chemo- and photodynamic therapy (PDT) of B16-F10 melanoma tumors. By performing intratumoral or intravenous injections of NPs, we observed different biodistribution profiles and tumor accumulation efficiencies. In particular, after intratumoral administration of NPs, they mostly remained in the tumors (> 97%); while for intravenous injection, the tumor accumulation of NPs was determined to be 8.67-12.4 ID/g%. Although the delivery efficiency of NPs (presented in ID/g%) in the tumor differs, we have developed an effective strategy for tumor inhibition based on combined chemo- and PDT by both intratumoral and intravenous injections of NPs. Notably, after the combined chemo- and PDT treatment with Ce6/Dox@CaCO3 NPs, all B16-F10 melanoma tumors in mice shrank substantially, by approximately 94% for intratumoral injection and 71% for intravenous injection, which are higher values compared to mono-therapy. In addition, the CaCO3 NPs showed negligible in vivo toxicity towards major organs such as the heart, lungs, liver, kidneys, and spleen. Thus, this work demonstrates a successful approach for the enhancement of NPs' efficiency in combined anti-tumor therapy.


Assuntos
Melanoma , Nanopartículas , Fotoquimioterapia , Porfirinas , Animais , Camundongos , Distribuição Tecidual , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Doxorrubicina/uso terapêutico , Doxorrubicina/farmacologia , Nanopartículas/uso terapêutico , Melanoma/tratamento farmacológico , Linhagem Celular Tumoral , Porfirinas/farmacologia
13.
Eur J Med Chem ; 254: 115325, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37084598

RESUMO

The design and synthesis of new promising compounds based on thienopyrimidine scaffold containing 2-aminothiophene fragments with good safety and favorable drug-like properties are highly relevant for chemotherapy. In this study, a series of 14 variants of thieno[3,2-e]pyrrolo[1,2-a]pyrimidine derivatives (11aa-oa) and their precursors (31 compounds) containing 2-aminothiophenes fragments (9aa-mb, 10aa-oa) were synthesized and screened for their cytotoxicity against B16-F10 melanoma cells. The selectivity of the developed compounds was assessed by determining the cytotoxicity using normal mouse embryonic fibroblasts (MEF NF2 cells). The lead compounds 9cb, 10ic and 11jc with the most significant antitumor activity and minimum cytotoxicity on normal non-cancerous cells were chosen for further in vivo experiments. Additional in vitro experiments with compounds 9cb, 10ic and 11jc showed that apoptosis was the predominant mechanism of death in B16-F10 melanoma cells. With support from in vivo studies, compounds 9cb, 10ic and 11jc demonstrated the biosafety to healthy mice and significant inhibition of the metastatic nodules in pulmonary metastatic melanoma mouse model. Histological analysis detected no abnormal changes in the main organs (the liver, spleen, kidneys, and heart) after the therapy. Thus, the developed compounds 9cb, 10ic and 11jc demonstrate high efficiency in the treatment of pulmonary metastatic melanoma and can be recommended for further preclinical investigation of the melanoma treatment.


Assuntos
Antineoplásicos , Melanoma Experimental , Animais , Camundongos , Fibroblastos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Melanoma Experimental/tratamento farmacológico , Pulmão , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico
14.
J Mater Chem B ; 11(17): 3860-3870, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013677

RESUMO

Transcutaneous immunization receives much attention due to the recognition of a complex network of immunoregulatory cells in various layers of the skin. The elaboration of non-invasive needle-free approaches towards antigen delivery holds especially great potential here while searching for a hygienically optimal vaccination strategy. Here, we report on a novel protocol for transfollicular immunization aiming at delivery of an inactivated influenza vaccine to perifollicular antigen presenting cells without disrupting the stratum corneum integrity. Porous calcium carbonate (vaterite) submicron carriers and sonophoresis were utilized for this purpose. Transportation of the vaccine-loaded particles into hair follicles of mice was assessed in vivo via optical coherence tomography monitoring. The effectiveness of the designed immunization protocol was further demonstrated in an animal model by means of micro-neutralization and enzyme-linked immunosorbent assays. The titers of secreted virus-specific IgGs were compared to those obtained in response to intramuscular immunization using conventional influenza vaccine formulation demonstrating no statistically significant differences in antibody levels between the groups. The findings of our pilot study render the intra-follicular delivery of the inactivated influenza vaccine by means of vaterite carriers a promising alternative to invasive immunization.


Assuntos
Vacinas contra Influenza , Influenza Humana , Animais , Camundongos , Humanos , Projetos Piloto , Administração Cutânea , Vacinação , Imunização/métodos
15.
J Colloid Interface Sci ; 643: 232-246, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37060699

RESUMO

Recently, multi-modal combined photothermal therapy (PTT) with the use of photo-active materials has attracted significant attention for cancer treatment. However, drug carriers enabling efficient heating at the tumor site are yet to be designed: this is a fundamental requirement for broad implementation of PTT in clinics. In this work, we design and develop hybrid carriers based on multilayer capsules integrated with selenium nanoparticles (Se NPs) and gold nanorods (Au NRs) to realize reactive oxygen species (ROS)-mediated combined PTT. We show theoretically and experimentally that cooperative interaction of Se NPs with Au NRs improves the heat release efficiency of the developed capsules. In addition, after uptake by tumor cells, intracellular ROS level amplified by Se NPs inhibits the tumor growth. As a consequence, the synergy between Se NPs and Au NRs exhibits the advantages of hybrid carriers such as (i) improved photothermal conversion efficiency and (ii) dual-therapeutic effect. The results of in vitro and in vivo experiments demonstrate that the combination of ROS-mediated therapy and PTT has a higher tumor inhibition efficiency compared to the single-agent treatment (using only Se-loaded or Au-loaded capsules). Furthermore, the developed hybrid carriers show negligible in vivo toxicity towards major organs such as the heart, lungs, liver, kidneys and spleen. This study not only provides a potential strategy for the design of multifunctional "all-in-one" carriers, but also contributes to the development of combined PTT in clinical practice.


Assuntos
Neoplasias , Fotoquimioterapia , Selênio , Humanos , Fotoquimioterapia/métodos , Ouro/farmacologia , Selênio/farmacologia , Espécies Reativas de Oxigênio , Polímeros , Projetos de Pesquisa , Terapia Fototérmica , Neoplasias/terapia , Linhagem Celular Tumoral
16.
ACS Appl Mater Interfaces ; 15(10): 13460-13471, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36867432

RESUMO

Conventional cancer therapy methods have serious drawbacks that are related to the nonspecific action of anticancer drugs that leads to high toxicity on normal cells and increases the risk of cancer recurrence. The therapeutic effect can be significantly enhanced when various treatment modalities are implemented. Here, we demonstrate that the radio- and photothermal therapy (PTT) delivered through nanocarriers (gold nanorods, Au NRs) in combination with chemotherapy in a melanoma cancer results in complete tumor inhibition compared to the single therapy. The synthesized nanocarriers can be effectively labeled with 188Re therapeutic radionuclide with a high radiolabeling efficiency (94-98%) and radiochemical stability (>95%) that are appropriate for radionuclide therapy. Further, 188Re-Au NRs, mediating the conversion of laser radiation into heat, were intratumorally injected and PTT was applied. Upon the irradiation of a near-infrared laser, dual photothermal and radionuclide therapy was achieved. Additionally, the combination of 188Re-labeled Au NRs with paclitaxel (PTX) has significantly improved the treatment efficiency (188Re-labeled Au NRs, laser irradiation, and PTX) compared to therapy in monoregime. Thus, this local triple-combination therapy can be a step toward the clinical translation of Au NRs for use in cancer treatment.


Assuntos
Antineoplásicos , Melanoma , Nanotubos , Humanos , Terapia Fototérmica , Antineoplásicos/farmacologia , Fototerapia/métodos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Melanoma/tratamento farmacológico , Radioisótopos/uso terapêutico , Ouro/farmacologia , Linhagem Celular Tumoral
17.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769101

RESUMO

Complex immunosuppressive therapy is prescribed in medical practice to patients with glomerulonephritis to help them overcome symptoms and prevent chronic renal failure. Such an approach requires long-term systemic administration of strong medications, which causes severe side effects. This work shows the efficiency of polymer capsule accumulation (2.8 ± 0.4 µm) containing labeled etanercept (100 µg per dose) in the kidneys of mice. The comparison of injection into the renal artery and tail vein shows the significant superiority of the intra-arterial administration strategy. The etanercept retention rate of 18% and 8% ID in kidneys was found 1 min and 1 h after injection, respectively. The capsules were predominantly localized in the glomeruli after injection in mice using a model of acute glomerulonephritis. Histological analysis confirmed a significant therapeutic effect only in animals with intra-arterial administration of microcapsules with etanercept. The proposed strategy combines endovascular surgery and the use of polymer microcapsules containing a high molecular weight drug that can be successfully applied to treat a wide range of kidney diseases associated with glomerular pathology.


Assuntos
Glomerulonefrite , Camundongos , Animais , Etanercepte/uso terapêutico , Cápsulas , Glomerulonefrite/patologia , Rim/patologia , Glomérulos Renais/patologia
18.
J Nanobiotechnology ; 20(1): 412, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109754

RESUMO

Besides the broad development of nanotechnological approaches for cancer diagnosis and therapy, currently, there is no significant progress in the treatment of different types of brain tumors. Therapeutic molecules crossing the blood-brain barrier (BBB) and reaching an appropriate targeting ability remain the key challenges. Many invasive and non-invasive methods, and various types of nanocarriers and their hybrids have been widely explored for brain tumor treatment. However, unfortunately, no crucial clinical translations were observed to date. In particular, chemotherapy and surgery remain the main methods for the therapy of brain tumors. Exploring the mechanisms of the BBB penetration in detail and investigating advanced drug delivery platforms are the key factors that could bring us closer to understanding the development of effective therapy against brain tumors. In this review, we discuss the most relevant aspects of the BBB penetration mechanisms, observing both invasive and non-invasive methods of drug delivery. We also review the recent progress in the development of functional drug delivery platforms, from viruses to cell-based vehicles, for brain tumor therapy. The destructive potential of chemotherapeutic drugs delivered to the brain tumor is also considered. This review then summarizes the existing challenges and future prospects in the use of drug delivery platforms for the treatment of brain tumors.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Transporte Biológico , Encéfalo , Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Humanos
19.
ACS Appl Bio Mater ; 5(5): 2411-2420, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35426657

RESUMO

The outstanding optical properties and multiphoton absorption of lead halide perovskites make them promising for use as fluorescence tags in bioimaging applications. However, their poor stability in aqueous media and biological fluids significantly limits their further use for in vitro and in vivo applications. In this work, we have developed a universal approach for the encapsulation of lead halide perovskite nanocrystals (PNCs) (CsPbBr3 and CsPbI3) as water-resistant fluorescent markers, which are suitable for fluorescence bioimaging. The obtained encapsulated PNCs demonstrate bright green emission at 510 nm (CsPbBr3) and red emission at 688 nm (CsPbI3) under one- and two-photon excitation, and they possess an enhanced stability in water and biological fluids (PBS, human serum) for a prolonged period of time (1 week). Further in vitro and in vivo experiments revealed enhanced stability of PNCs even after their introduction directly into the biological microenvironment (CT26 cells and DBA mice). The developed approach allows making a step toward stable, low-cost, and highly efficient bioimaging platforms that are spectrally tunable and have narrow emission.


Assuntos
Nanopartículas , Polímeros , Animais , Compostos de Cálcio , Camundongos , Camundongos Endogâmicos DBA , Nanopartículas/química , Óxidos , Titânio , Água/química
20.
J Control Release ; 344: 1-11, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35181413

RESUMO

Considering the clinical limitations of individual approaches against metastatic lung cancer, the use of combined therapy can potentially improve the therapeutic effect of treatment. However, determination of the appropriate strategy of combined treatment can be challenging. In this study, combined chemo- and radionuclide therapy has been realized using radionuclide carriers (177Lu-labeled core-shell particles, 177Lu-MPs) and chemotherapeutic drug (cisplatin, CDDP) for treatment of lung metastatic cancer. The developed core-shell particles can be effectively loaded with 177Lu therapeutic radionuclide and exhibit good radiochemical stability for a prolonged period of time. In vivo biodistribution experiments have demonstrated the accumulation of the developed carriers predominantly in lungs. Direct radiometry analysis did not reveal an increased absorbance of radiation by healthy organs. It has been shown that the radionuclide therapy with 177Lu-MPs in mono-regime is able to inhibit the number of metastatic nodules (untreated mice = 120 ± 12 versus177Lu-MPs = 50 ± 7). The combination of chemo- and radionuclide therapy when using 177Lu-MPs and CDDP further enhanced the therapeutic efficiency of tumor treatment compared to the single therapy (177Lu-MPs = 50 ± 7 and CDDP = 65 ± 10 versus177Lu-MPs + CDDP = 37 ± 5). Thus, this work is a systematic research on the applicability of the combination of chemo- and radionuclide therapy to treat metastatic lung cancer.


Assuntos
Carbonato de Cálcio , Neoplasias Pulmonares , Animais , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Lutécio/uso terapêutico , Camundongos , Radioisótopos/uso terapêutico , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA