Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Endovasc Ther ; : 15266028221126938, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36172738

RESUMO

PURPOSE: Intra-arterial administration of microbubbles (MBs) through an ultrasound (US) catheter increases the local concentration of MBs into the thrombus and may further enhance outcomes of contrast-enhanced sonothrombolysis (CEST). The objective of this study was to evaluate the feasibility and lytic efficacy of intra-arterial infusion of MBs during US-enhanced thrombolysis in both in vitro and in vivo peripheral arterial occluded models. MATERIALS AND METHODS: SonoVue and Luminity MBs were infused at a flow rate of 20 mL/h through either the drug delivery lumen of the US catheter (DDC, n=20) or through the tube lumen of the vascular phantom (systematic infusion, n=20) during thrombolysis with a low-dose urokinase (UK) protocol (50 000 IU/h) with(out) US application to assess MB survivability and size by pre-treatment and post-treatment measurements. A human thrombus was placed into a vascular phantom of the flow system to examine the lytic effects of CEST by post-treatment D-dimer concentrations measurements of 5 treatment conditions (saline, UK, UK+US, UK+US+SonoVue, and UK+US+Luminity). Thrombolytic efficacy of localized MBs and US delivery was then investigated in vivo in 5 porcine models by arterial blood flow, microcirculation, and postmortem determined thrombus weight and remaining length. RESULTS: US exposure significantly decreased SonoVue (p=0.000) and Luminity (p=0.000) survivability by 37% and 62%, respectively. In vitro CEST treatment resulted in higher median D-dimer concentrations for the SonoVue (0.94 [0.07-7.59] mg/mL, p=0.025) and Luminity (0.83 [0.09-2.53] mg/mL, p=0.048) subgroups when compared with thrombolysis alone (0.36 [0.02-1.00] mg/mL). The lytic efficacy of CEST examined in the porcine model showed an improved median arterial blood flow of 21% (7%-79%), and a median thrombus weight and length of 1.02 (0.96-1.43) g and 2.25 (1.5-4.0) cm, respectively. One allergic reaction and 2 arrhythmias were observed due to the known allergic reaction on lipids in the porcine model. CONCLUSION: SonoVue and Luminity can be combined with an US catheter and could potentially accelerate thrombolytic treatment of peripheral arterial occlusions. CLINICAL IMPACT: Catheter-directed thrombolysis showed to be an effective alternative to surgery for acute peripheral arterial occlusions, but this technique is still associated with several limb and life-threatening complications. The effects of thrombolysis on clot dissolution may be further enhanced by intra-arterial administration of microbubbles through an ultrasound catheter. This study demonstrates the feasibility and lytic efficacy of intra-arterial infusion of microbubbles during US-enhanced thrombolysis in both in vitro and in vivo peripheral arterial occluded models.

2.
Front Immunol ; 13: 732977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371001

RESUMO

Immunoglobulin A (IgA) is generally considered as a non-inflammatory regulator of mucosal immunity, and its importance in diversifying the gut microbiota is increasingly appreciated. IgA autoantibodies have been found in several autoimmune or chronic inflammatory diseases, but their role in pathophysiology is ill-understood. IgA can interact with the Fc receptor FcαRI on immune cells. We now established a novel IgA autoimmune blistering model, which closely resembles the human disease linear IgA bullous disease (LABD) by using genetically modified mice that produce human IgA and express human FcαRI. Intravital microscopy demonstrated that presence of IgA anti-collagen XVII, - the auto-antigen in LABD-, resulted in neutrophil activation and extravasation from blood vessels into skin tissue. Continued exposure to anti-collagen XVII IgA led to massive neutrophil accumulation, severe tissue damage and blister formation. Importantly, treatment with anti-FcαRI monoclonal antibodies not only prevented disease, but was also able to resolve existing inflammation and tissue damage. Collectively, our data reveal a novel role of neutrophil FcαRI in IgA autoantibody-mediated disease and identify FcαRI as promising new therapeutic target to resolve chronic inflammation and tissue damage.


Assuntos
Imunoglobulina A , Receptores Fc , Animais , Anticorpos Monoclonais/uso terapêutico , Autoanticorpos , Inflamação/tratamento farmacológico , Camundongos
3.
Aging (Albany NY) ; 14(1): 28-53, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35023852

RESUMO

Aging-associated muscle wasting and impaired regeneration are caused by deficiencies in muscle stem cell (MuSC) number and function. We postulated that aged MuSCs are intrinsically impaired in their responsiveness to omnipresent mechanical cues through alterations in MuSC morphology, mechanical properties, and number of integrins, culminating in impaired proliferative capacity. Here we show that aged MuSCs exhibited significantly lower growth rate and reduced integrin-α7 expression as well as lower number of phospho-paxillin clusters than young MuSCs. Moreover, aged MuSCs were less firmly attached to matrigel-coated glass substrates compared to young MuSCs, as 43% of the cells detached in response to pulsating fluid shear stress (1 Pa). YAP nuclear localization was 59% higher than in young MuSCs, yet YAP target genes Cyr61 and Ctgf were substantially downregulated. When subjected to pulsating fluid shear stress, aged MuSCs exhibited reduced upregulation of proliferation-related genes. Together these results indicate that aged MuSCs exhibit impaired mechanosensitivity and growth potential, accompanied by altered morphology and mechanical properties as well as reduced integrin-α7 expression. Aging-associated impaired muscle regenerative capacity and muscle wasting is likely due to aging-induced intrinsic MuSC alterations and dysfunctional mechanosensitivity.


Assuntos
Proliferação de Células/fisiologia , Senescência Celular/fisiologia , Mecanotransdução Celular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Células-Tronco/fisiologia , Envelhecimento , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Adesão Celular/fisiologia , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Resistência ao Cisalhamento
4.
Ultrasound Med Biol ; 47(10): 2821-2838, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34272082

RESUMO

Catheter-directed thrombolysis (CDT) for acute peripheral arterial occlusion is time consuming and carries a risk of major hemorrhage. Contrast-enhanced sonothrombolysis (CEST) might enhance outcomes compared with standard CDT. In the study described here, we systematically reviewed all in vivo studies on contrast-enhanced sonothrombolysis in a setting of arterial thrombosis. A systematic search of the PubMed, Embase, Cochrane Library and Web of Science databases was conducted. Two reviewers independently performed the study selection, quality assessment and data extraction. Primary outcomes were recanalization rate and thrombus weight. Secondary outcome was any possible adverse event. The 35 studies included in this review were conducted in four different (pre)clinical settings: ischemic stroke, myocardial infarction, (peripheral) arterial thrombosis and arteriovenous graft occlusion. Because of the high heterogeneity among the studies, it was not possible to conduct a meta-analysis. In almost all studies, recanalization rates were higher in the group that underwent a form of CEST. One study was terminated early because of a higher incidence of intracranial hemorrhage. Studies on CEST suggest that adding microbubbles and ultrasound to standard intra-arterial CDT is safe and might improve outcomes in acute peripheral arterial thrombosis. Further research is needed before CEST can be implemented in daily practice.


Assuntos
Acidente Vascular Cerebral , Trombose , Fibrinolíticos/uso terapêutico , Hemorragia/tratamento farmacológico , Humanos , Microbolhas , Terapia Trombolítica , Trombose/diagnóstico por imagem , Trombose/tratamento farmacológico , Resultado do Tratamento , Ultrassonografia
5.
Glia ; 69(6): 1413-1428, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33506583

RESUMO

Synucleinopathies such as Parkinson's disease (PD) are hallmarked by α-synuclein (α-syn) pathology and neuroinflammation. This neuroinflammation involves activated microglia with increased secretion of interleukin-1ß (IL-1ß). The main driver of IL-1ß secretion from microglia is the NLRP3 inflammasome. A critical link between microglial NLRP3 inflammasome activation and the progression of both α-syn pathology and dopaminergic neurodegeneration has been identified in various PD models in vivo. α-Syn is known to activate the microglial NLRP3 inflammasome in murine models, but its relationship to this inflammasome in human microglia has not been established. In this study, IL-1ß secretion from primary mouse microglia induced by α-syn fibrils was dependent on NLRP3 inflammasome assembly and caspase-1 activity, as previously reported. We show that exposure of primary human microglia to α-syn fibrils also resulted in significant IL-1ß secretion that was dependent on inflammasome assembly and involved the recruitment of caspase-1 protein to inflammasome scaffolds as visualized with superresolution microscopy. While canonical IL-1ß secretion was clearly dependent on caspase-1 enzymatic activity, this activity was less clearly involved for α-syn-induced IL-1ß secretion from human microglia. This work presents similarities between primary human and mouse microglia in the mechanisms of activation of the NLRP3 inflammasome by α-syn, but also highlights evidence to suggest that there may be a difference in the requirement for caspase-1 activity in IL-1ß output. The data represent a novel characterization of PD-related NLRP3 inflammasome activation in primary human microglia and further implicate this mechanism in the pathology underlying PD.


Assuntos
Inflamassomos , Doença de Parkinson , alfa-Sinucleína/metabolismo , Animais , Caspase 1 , Humanos , Interleucina-1beta , Camundongos , Microglia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Doenças Neuroinflamatórias
6.
J Cell Physiol ; 235(11): 8085-8097, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31960422

RESUMO

In non-small cell lung cancer, sensitizing mutations in epidermal growth factor receptor (EGFR) or cMET amplification serve as good biomarkers for targeted therapies against EGFR or cMET, respectively. Here we aimed to determine how this different genetic background would affect the interaction between the EGFR-inhibitor erlotinib and the cMET-inhibitor crizotinib. To unravel the mechanism of synergy we investigated the effect of the drugs on various parameters, including cell cycle arrest, migration, protein phosphorylation, kinase activity, the expression of drug efflux pumps, intracellular drug concentrations, and live-cell microscopy. We observed additive effects in EBC-1, H1975, and HCC827, and a strong synergism in the HCC827GR5 cell line. This cell line is a clone of the HCC827 cells that harbor an EGFR exon 19 deletion and has been made resistant to the EGFR-inhibitor gefitinib, resulting in cMET amplification. Remarkably, the intracellular concentration of crizotinib was significantly higher in HCC827GR5 compared to the parental HCC827 cell line. Furthermore, live-cell microscopy with a pH-sensitive probe showed a differential reaction of the pH in the cytoplasm and the lysosomes after drug treatment in the HCC827GR5 in comparison with the HCC827 cells. This change in pH could influence the process of lysosomal sequestration of drugs. These results led us to the conclusion that lysosomal sequestration is involved in the strong synergistic reaction of the HCC827GR5 cell line to crizotinib-erlotinib combination. This finding warrants future clinical studies to evaluate whether genetic background and lysosomal sequestration could guide tailored therapeutic interventions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Lisossomos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-met/genética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Crizotinibe/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Cloridrato de Erlotinib/farmacologia , Gefitinibe/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mutação/genética , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores
7.
Eur J Vasc Endovasc Surg ; 58(6): 891-901, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31791617

RESUMO

OBJECTIVES: Juxtarenal aortic surgery induces renal ischaemia reperfusion, which contributes to systemic inflammatory tissue injury and remote organ damage. Renal cooling during suprarenal cross clamping has been shown to reduce renal damage. It is hypothesised that renal cooling during suprarenal cross clamping also has systemic effects and could decrease damage to other organs, like the sigmoid colon. METHODS: Open juxtarenal aortic aneurysm repair was simulated in 28 male Wistar rats with suprarenal cross clamping for 45 min, followed by 20 min of infrarenal aortic clamping. Four groups were created: sham, no, warm (37 °C saline), and cold (4 °C saline) renal perfusion during suprarenal cross clamping. Primary outcomes were renal damage and sigmoid damage. To assess renal damage, procedure completion serum creatinine rises were measured. Peri-operative microcirculatory flow ratios were determined in the sigmoid using laser Doppler flux. Semi-quantitative immunofluorescence microscopy was used to measure alterations in systemic inflammation parameters, including reactive oxygen species (ROS) production in circulating leukocytes and leukocyte infiltration in the sigmoid. Sigmoid damage was assessed using digestive enzyme (intestinal fatty acid binding protein - I-FABP) leakage, a marker of intestinal integrity. RESULTS: Suprarenal cross clamping caused deterioration of all systemic parameters. Only cold renal perfusion protected against serum creatinine rise: 0.45 mg/dL without renal perfusion, 0.33 mg/dL, and 0.14 mg/dL (p = .009) with warm and cold perfusion, respectively. Microcirculation in the sigmoid was attenuated with warm (p = .002) and cold renal perfusion (p = .002). A smaller increase of ROS production (p = .034) was seen only after cold perfusion, while leukocyte infiltration in the sigmoid colon decreased after warm (p = .006) and cold perfusion (p = .018). Finally, digestive enzyme leakage increased more without (1.5AU) than with warm (1.3AU; p = .007) and cold renal perfusion (1.2AU; p = .002). CONCLUSIONS: Renal ischaemia/reperfusion injury after suprarenal cross clamping decreased microcirculatory flow, increased systemic ROS production, leukocyte infiltration, and I-FABP leakage in the sigmoid colon. Cold renal perfusion was superior to warm perfusion and reduced renal damage and had beneficial systemic effects, reducing sigmoid damage in this experimental study.


Assuntos
Injúria Renal Aguda/prevenção & controle , Aneurisma da Aorta Abdominal/cirurgia , Colo Sigmoide/irrigação sanguínea , Perfusão/métodos , Traumatismo por Reperfusão/prevenção & controle , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Animais , Aorta Abdominal/cirurgia , Temperatura Baixa , Colo Sigmoide/patologia , Constrição , Modelos Animais de Doenças , Temperatura Alta/efeitos adversos , Humanos , Rim/irrigação sanguínea , Rim/patologia , Masculino , Estresse Oxidativo , Ratos , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologia , Resultado do Tratamento
8.
JACC Basic Transl Sci ; 4(5): 575-591, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31768475

RESUMO

The positive findings of the EMPA-REG OUTCOME trial (Randomized, Placebo-Controlled Cardiovascular Outcome Trial of Empagliflozin) on heart failure (HF) outcome in patients with type 2 diabetes mellitus suggest a direct effect of empagliflozin on the heart. These patients frequently have HF with preserved ejection fraction (HFpEF), in which a metabolic risk-related pro-inflammatory state induces cardiac microvascular endothelial cell (CMEC) dysfunction with subsequent cardiomyocyte (CM) contractility impairment. This study showed that CMECs confer a direct positive effect on contraction and relaxation of CMs, an effect that requires nitric oxide, is diminished after CMEC stimulation with tumor necrosis factor-α, and is restored by empagliflozin. Our findings on the effect of empagliflozin on CMEC-mediated preservation of CM function suggests that empagliflozin can be used to treat the cardiac mechanical implications of microvascular dysfunction in HFpEF.

9.
J Biol Chem ; 294(44): 16297-16308, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31519750

RESUMO

Herpesviruses can rewire cellular signaling in host cells by expressing viral G protein-coupled receptors (GPCRs). These viral receptors exhibit homology to human chemokine receptors, but some display constitutive activity and promiscuous G protein coupling. Human cytomegalovirus (HCMV) has been detected in multiple cancers, including glioblastoma, and its genome encodes four GPCRs. One of these receptors, US28, is expressed in glioblastoma and possesses constitutive activity and oncomodulatory properties. UL33, another HCMV-encoded GPCR, also displays constitutive signaling via Gαq, Gαi, and Gαs proteins. However, little is known about the nature and functional effects of UL33-driven signaling. Here, we assessed UL33's signaling repertoire and oncomodulatory potential. UL33 activated multiple proliferative, angiogenic, and inflammatory signaling pathways in HEK293T and U251 glioblastoma cells. Notably, upon infection, UL33 contributed to HCMV-mediated STAT3 activation. Moreover, UL33 increased spheroid growth in vitro and accelerated tumor growth in different in vivo tumor models, including an orthotopic glioblastoma xenograft model. UL33-mediated signaling was similar to that stimulated by US28; however, UL33-induced tumor growth was delayed. Additionally, the spatiotemporal expression of the two receptors only partially overlapped in HCMV-infected glioblastoma cells. In conclusion, our results unveil that UL33 has broad signaling capacity and provide mechanistic insight into its functional effects. UL33, like US28, exhibits oncomodulatory properties, elicited via constitutive activation of multiple signaling pathways. UL33 and US28 might contribute to HCMV's oncomodulatory effects through complementing and converging cellular signaling, and hence UL33 may represent a promising drug target in HCMV-associated malignancies.


Assuntos
Receptores de Quimiocinas/metabolismo , Proteínas Virais/metabolismo , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Citomegalovirus/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Glioblastoma/patologia , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Receptores de Quimiocinas/genética , Receptores Virais/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
10.
Acta Neuropathol ; 138(6): 943-970, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31456031

RESUMO

Granulovacuolar degeneration bodies (GVBs) are membrane-bound vacuolar structures harboring a dense core that accumulate in the brains of patients with neurodegenerative disorders, including Alzheimer's disease and other tauopathies. Insight into the origin of GVBs and their connection to tau pathology has been limited by the lack of suitable experimental models for GVB formation. Here, we used confocal, automated, super-resolution and electron microscopy to demonstrate that the seeding of tau pathology triggers the formation of GVBs in different mouse models in vivo and in primary mouse neurons in vitro. Seeding-induced intracellular tau aggregation, but not seed exposure alone, causes GVB formation in cultured neurons, but not in astrocytes. The extent of tau pathology strongly correlates with the GVB load. Tau-induced GVBs are immunoreactive for the established GVB markers CK1δ, CK1ɛ, CHMP2B, pPERK, peIF2α and pIRE1α and contain a LAMP1- and LIMP2-positive single membrane that surrounds the dense core and vacuole. The proteolysis reporter DQ-BSA is detected in the majority of GVBs, demonstrating that GVBs contain degraded endocytic cargo. GFP-tagged CK1δ accumulates in the GVB core, whereas GFP-tagged tau or GFP alone does not, indicating selective targeting of cytosolic proteins to GVBs. Taken together, we established the first in vitro model for GVB formation by seeding tau pathology in primary neurons. The tau-induced GVBs have the marker signature and morphological characteristics of GVBs in the human brain. We show that GVBs are lysosomal structures distinguished by the accumulation of a characteristic subset of proteins in a dense core.


Assuntos
Lisossomos/patologia , Neurônios/patologia , Tauopatias/patologia , Vacúolos/patologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Feminino , Humanos , Lisossomos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Tauopatias/metabolismo , Vacúolos/metabolismo , Proteínas tau/genética
11.
Ann Vasc Surg ; 57: 210-219, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30684630

RESUMO

BACKGROUND: In abdominal aortic aneurysm (AAA), pathophysiology deterioration of the medial aortic layer plays a critical role. Key players in vessel wall degeneration are reactive oxygen species (ROS), smooth muscle cell apoptosis, and extracellular matrix degeneration by matrix metalloproteinase-9 (MMP-9). Lipocalin-2, also neutrophil gelatinase-associated lipocalin (NGAL), is suggested to be involved in these degenerative processes in other cardiovascular diseases. We aimed to further investigate the role of NGAL in AAA development and rupture. METHODS: In this observational study, aneurysm tissue and blood of ruptured (n = 13) AAA patients were investigated versus nonruptured (n = 26) patients. Nondilated aortas (n = 5) from deceased patients and venous blood from healthy volunteers (n = 10) served as controls. NGAL concentrations in tissue and blood were measured by enzyme-linked immunosorbent assay and immunofluorescence microscopy. Nitrotyrosine (marker of ROS), MMP-9, and caspase-3 (marker of apoptosis) in aneurysm tissue were measured by immunofluorescence microscopy. AAA expansion rates were calculated retrospectively. RESULTS: NGAL (in µg/mL) blood concentration in ruptured AAA was 46 (range 22-122) vs. 26 (range 6-55) in nonruptured AAA (P < 0.01) and 14 (range 12-22) in controls (P < 0.01). In the aneurysm wall of ruptured AAA, NGAL concentration was 4.7 (range 1.4-25) vs. 4.4 (range 0.2-14) in nonruptured AAA (not significant) and 1.8 (range 1.2-2.7) in nondilated aortas (P = 0.04). In the medial layer, NGAL correlated positively with nitrotyrosine (Rs = 0.80, P < 0.01), MMP-9 (Rs = 0.56, P = 0.02), and caspase-3 (Rs = 0.75, P = 0.01). NGAL did not correlate to AAA expansion rate in blood or tissue (P = 0.34 and P = 0.95, respectively). CONCLUSIONS: This study demonstrates that NGAL blood concentration is higher in ruptured AAA patients than in nonruptured AAA. NGAL expression in the AAA wall is also higher than in nondilated aorta. Furthermore, its expression is associated with factors of vessel wall deterioration. Based on our study results, we could not determine NGAL as a biomarker for AAA growth or rupture. However, our findings do support a potential role of NGAL in the development of AAA.


Assuntos
Aorta Abdominal/química , Aneurisma da Aorta Abdominal/sangue , Ruptura Aórtica/sangue , Lipocalina-2/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/patologia , Ruptura Aórtica/patologia , Apoptose , Biomarcadores/sangue , Caspase 3/análise , Dilatação Patológica , Progressão da Doença , Feminino , Humanos , Masculino , Metaloproteinase 9 da Matriz/análise , Pessoa de Meia-Idade , Estresse Oxidativo , Estudos Retrospectivos , Tirosina/análogos & derivados , Tirosina/análise , Regulação para Cima , Remodelação Vascular
12.
Mol Pharm ; 16(1): 273-281, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30550295

RESUMO

Antibody fragment F8-mediated interleukin 10 (IL10) delivery is a novel treatment for rheumatoid arthritis (RA). F8 binds to the extra-domain-A of fibronectin (ED-A). In this study, in vivo biodistribution and arthritis targeting of radiolabeled F8-IL10 were investigated in RA patients, followed by further animal studies. Therefore, three RA patients (DAS28 > 3.2) received 0.4 mg of 30-74 megabecquerel [124I]I-F8-IL10 for PET-CT and blood sampling. In visually identified PET-positive joints, target-to-background was calculated. Healthy mice, rats, and arthritic rats were injected with iodinated F8-IL10 or KSF-IL10 control antibody. Various organs were excised, weighed, and counted for radioactivity. Tissue sections were stained for fibronectin ED-A. In RA patients, [124I]I-F8-IL10 was cleared rapidly from the circulation with less than 1% present in blood after 5 min. PET-CT showed targeting in 38 joints (11-15 per patient) and high uptake in the liver and spleen. Mean target-to-background ratios of PET-positive joints were 2.5 ± 1.2, 1.5 times higher for clinically active than clinically silent joints. Biodistribution of radioiodinated F8-IL10 in healthy mice showed no effect of the radioiodination method. [124I]I-F8-IL10 joint uptake was also demonstrated in arthritic rats, ∼14-fold higher than that of the control antibody [124I]I-KSF-IL10 ( p < 0.001). Interestingly, liver and spleen uptake were twice as high in arthritic than in healthy rats and were related to increased (∼7×) fibronectin ED-A expression in these tissues. In conclusion, [124I]I-F8-IL10 uptake was observed in arthritic joints in RA patients holding promise for visualization of inflamed joints by PET-CT imaging and therapeutic targeting. Patient observations and, subsequently, arthritic animal studies pointed to awareness of increased [124I]I-F8-IL10 uptake in the liver and spleen associated with moderate systemic inflammation. This translational study demonstrated the value of in vivo biodistribution and PET-CT-guided imaging in development of new and potential antirheumatic drugs'.


Assuntos
Artrite Reumatoide/diagnóstico por imagem , Artrite Reumatoide/metabolismo , Interleucina-10/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais Humanizados , Antirreumáticos/farmacocinética , Antirreumáticos/uso terapêutico , Humanos , Interleucina-10/genética , Fígado/metabolismo , Masculino , Camundongos , Ratos , Baço/metabolismo
13.
Front Immunol ; 9: 1598, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30050535

RESUMO

The indoleamine 2,3-dioxygenase (IDO) enzyme can act as an immunoregulator by inhibiting T cell function via the degradation of the essential amino acid tryptophan (trp) into kynurenine (kyn) and its derivates. The kyn/trp ratio in serum is a prognostic factor for cervical cancer patients; however, information about the relationship between serum levels and IDO expression in the tumor is lacking. IDO expression was studied in 71 primary and 14 paired metastatic cervical cancer samples by various immunohistochemical (IHC) techniques, including 7-color fluorescent multiparameter IHC, and the link between the concentration of IDO metabolites in serum, clinicopathological characteristics, and the presence of (proliferating) T cells (CD8, Ki67, and FoxP3) was examined. In addition, we compared the relationships between IDO1 and IFNG gene expression and clinical parameters using RNAseq data from 144 cervical tumor samples published by The Cancer Genome Atlas (TCGA). Here, we demonstrate that patchy tumor IDO expression is associated with an increased systemic kyn/trp ratio in cervical cancer (P = 0.009), whereas marginal tumor expression at the interface with the stroma is linked to improved disease-free (DFS) (P = 0.017) and disease-specific survival (P = 0.043). The latter may be related to T cell infiltration and localized IFNγ release inducing IDO expression. Indeed, TCGA analysis of 144 cervical tumor samples revealed a strong and positive correlation between IDO1 and IFNG mRNA expression levels (P < 0.001) and a significant association with improved DFS for high IDO1 and IFNG transcript levels (P = 0.031). Unexpectedly, IDO+ tumors had higher CD8+Ki67+ T cell rates (P = 0.004). Our data thus indicate that the serum kyn/trp ratio and IDO expression in primary tumor samples are not clear-cut biomarkers for prognosis and stratification of patients with early stage cervical cancer for clinical trials implementing IDO inhibitors. Rather, a marginal IDO expression pattern in the tumor dominantly predicts favorable outcome, which might be related to IFNγ release in the cervical tumor microenvironment.

14.
Cell Biochem Biophys ; 76(3): 401-410, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29956081

RESUMO

Reactive oxygen species (ROS) control forkhead box O (FOXO) transcription factor activity by influencing their nuclear translocation. However, knowledge of the ROS cellular source(s) involved herein remains scarce. Recently, we have shown p47phox-dependent activation of ROS-producing NADPH oxidase (NOX) at the nuclear pore in H9c2 rat cardiomyoblasts in response to ischemia. This localizes NOX perfectly to affect protein nuclear translocation, including that of transcription factors. In the current study, involvement of p47phox-dependent production of ROS in the nuclear translocation of FOXO1 was analyzed in H9c2 cells following 4 h of metabolic inhibition (MI), which mimics the effects of ischemia. Nuclear translocation of FOXO1 was determined by quantitative digital-imaging fluorescence and western blot analysis. Subsequently, the effect of inhibiting p47phox-dependent ROS production by short hairpin RNA (shRNA) transfection on FOXO1 translocation was analyzed by digital-imaging microscopy. MI induced a significant translocation of FOXO1 into the nucleus. Transfection with p47phox-shRNA successfully knocked-down p47phox expression, reduced nuclear nitrotyrosine production, an indirect marker for ROS production, and inhibited the nuclear translocation of FOXO1 following MI. With these results, we show for the first time that nuclear import of FOXO1 induced by MI in H9c2 depends critically on p47phox-mediated ROS production.


Assuntos
Núcleo Celular/metabolismo , NADPH Oxidases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular , Meios de Cultura/química , Meios de Cultura/farmacologia , Citosol/metabolismo , Microscopia de Fluorescência , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Tirosina/análogos & derivados , Tirosina/metabolismo
15.
Sci Rep ; 8(1): 8094, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802279

RESUMO

The pathophysiology of aortic aneurysms (AA) is far from being understood. One reason for this lack of understanding is basic research being constrained to fixated cells or isolated cell cultures, by which cell-to-cell and cell-to-matrix communications are missed. We present a new, in vitro method for extended preservation of aortic wall sections to study pathophysiological processes. Intraoperatively harvested, live aortic specimens were cut into 150 µm sections and cultured. Viability was quantified up to 92 days using immunofluorescence. Cell types were characterized using immunostaining. After 14 days, individual cells of enzymatically digested tissues were examined for cell type and viability. Analysis of AA sections (N = 8) showed a viability of 40% at 7 days and smooth muscle cells, leukocytes, and macrophages were observed. Protocol optimization (N = 4) showed higher stable viability at day 62 and proliferation of new cells at day 92. Digested tissues showed different cell types and a viability up to 75% at day 14. Aortic tissue viability can be preserved until at least 62 days after harvesting. Cultured tissues can be digested into viable single cells for additional techniques. Present protocol provides an appropriate ex vivo setting to discover and study pathways and mechanisms in cultured human aneurysmal aortic tissue.


Assuntos
Aorta/patologia , Aorta/fisiopatologia , Aorta/metabolismo , Aneurisma Aórtico/patologia , Aneurisma Aórtico/fisiopatologia , Regulação da Expressão Gênica , Humanos , Sobrevivência de Tecidos
16.
Transl Res ; 199: 24-38, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29802817

RESUMO

Alkaline phosphatase (AP) is a gate-keeper of innate immune system responses by detoxifying inflammation triggering moieties released from endogenous and external sources. We examined whether AP's broad mechanism of action constitutes a safe therapeutic, either as single agent or combined with methotrexate (MTX), for chronic inflammatory disorders, for example, rheumatoid arthritis (RA). A rat model for RA was used with repeated intra-articular methylated bovine serum albumin (mBSA) injections in 1 knee ("arthritic" knee), with the contralateral knee serving as internal control. AP (200 µg, subcut) was administered before mBSA injections (prophylactic setting) or after arthritis induction (therapeutic setting) or combined with MTX (0.3 mg/kg or 1 mg/kg; intraperitoneally). As end point of treatment outcome, macrophage infiltration in knees, liver, and spleen was assessed by immunohistochemistry (ED1 and ED2 expression), immunofluoresence (macrophage marker folate receptor-ß [FRß]), and [18F]fluoro-polyethylene glycol-folate positron emission tomography (PET) (macrophage imaging) and ex vivo tissue distribution. Single-agent AP treatment and combinations with MTX were well tolerated. Both prophylactic and therapeutic AP markedly reduced synovial macrophage infiltration in arthritic knees (ED1: 3.5- to 4-fold; ED2: 3.5- to 6-fold), comparable with MTX treatment. AP-MTX combinations slightly improved on single agent effects. PET monitoring and ex vivo tissue distribution studies corroborated the impact of AP, MTX, and AP-MTX on reducing synovial macrophage infiltration. Beyond localized articular effects, AP also revealed systemic anti-inflammatory effects by a 2-fold reduction of ED1, ED2, and FRß+ macrophages in liver and spleen of arthritic rats. Collectively, single-agent AP and AP combined with MTX elicited local and systemic anti-arthritic activity in arthritic rats.


Assuntos
Fosfatase Alcalina/uso terapêutico , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/prevenção & controle , Metotrexato/uso terapêutico , Fosfatase Alcalina/farmacocinética , Animais , Artrite Reumatoide/diagnóstico por imagem , Modelos Animais de Doenças , Quimioterapia Combinada , Fígado/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Ratos Wistar , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/uso terapêutico , Baço/patologia , Membrana Sinovial/patologia , Distribuição Tecidual
17.
Am J Respir Crit Care Med ; 198(4): 472-485, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29578749

RESUMO

RATIONALE: Diaphragm weakness in critically ill patients prolongs ventilator dependency and duration of hospital stay and increases mortality and healthcare costs. The mechanisms underlying diaphragm weakness include cross-sectional fiber atrophy and contractile protein dysfunction, but whether additional mechanisms are at play is unknown. OBJECTIVES: To test the hypothesis that mechanical ventilation with positive end-expiratory pressure (PEEP) induces longitudinal atrophy by displacing the diaphragm in the caudal direction and reducing the length of fibers. METHODS: We studied structure and function of diaphragm fibers of mechanically ventilated critically ill patients and mechanically ventilated rats with normal and increased titin compliance. MEASUREMENTS AND MAIN RESULTS: PEEP causes a caudal movement of the diaphragm, both in critically ill patients and in rats, and this caudal movement reduces fiber length. Diaphragm fibers of 18-hour mechanically ventilated rats (PEEP of 2.5 cm H2O) adapt to the reduced length by absorbing serially linked sarcomeres, the smallest contractile units in muscle (i.e., longitudinal atrophy). Increasing the compliance of titin molecules reduces longitudinal atrophy. CONCLUSIONS: Mechanical ventilation with PEEP results in longitudinal atrophy of diaphragm fibers, a response that is modulated by the elasticity of the giant sarcomeric protein titin. We postulate that longitudinal atrophy, in concert with the aforementioned cross-sectional atrophy, hampers spontaneous breathing trials in critically ill patients: during these efforts, end-expiratory lung volume is reduced, and the shortened diaphragm fibers are stretched to excessive sarcomere lengths. At these lengths, muscle fibers generate less force, and diaphragm weakness ensues.


Assuntos
Diafragma/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Respiração com Pressão Positiva/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biópsia , Diafragma/diagnóstico por imagem , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia Muscular/diagnóstico por imagem , Ratos , Ultrassonografia
18.
Clin Cancer Res ; 23(24): 7498-7511, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29025767

RESUMO

Purpose: Daratumumab treatment results in a marked reduction of CD38 expression on multiple myeloma cells. The aim of this study was to investigate the clinical implications and the underlying mechanisms of daratumumab-mediated CD38 reduction.Experimental Design: We evaluated the effect of daratumumab alone or in combination with lenalidomide-dexamethasone, on CD38 levels of multiple myeloma cells and nontumor immune cells in the GEN501 study (daratumumab monotherapy) and the GEN503 study (daratumumab combined with lenalidomide-dexamethasone). In vitro assays were also performed.Results: In both trials, daratumumab reduced CD38 expression on multiple myeloma cells within hours after starting the first infusion, regardless of depth and duration of the response. In addition, CD38 expression on nontumor immune cells, including natural killer cells, T cells, B cells, and monocytes, was also reduced irrespective of alterations in their absolute numbers during therapy. In-depth analyses revealed that CD38 levels of multiple myeloma cells were only reduced in the presence of complement or effector cells, suggesting that the rapid elimination of CD38high multiple myeloma cells can contribute to CD38 reduction. In addition, we discovered that daratumumab-CD38 complexes and accompanying cell membrane were actively transferred from multiple myeloma cells to monocytes and granulocytes. This process of trogocytosis was also associated with reduced surface levels of some other membrane proteins, including CD49d, CD56, and CD138.Conclusions: Daratumumab rapidly reduced CD38 expression levels, at least in part, through trogocytosis. Importantly, all these effects also occurred in patients with deep and durable responses, thus excluding CD38 reduction alone as a mechanism of daratumumab resistance.The trials were registered at www.clinicaltrials.gov as NCT00574288 (GEN501) and NCT1615029 (GEN503). Clin Cancer Res; 23(24); 7498-511. ©2017 AACR.


Assuntos
ADP-Ribosil Ciclase 1/genética , Anticorpos Monoclonais/administração & dosagem , Mieloma Múltiplo/tratamento farmacológico , Talidomida/análogos & derivados , ADP-Ribosil Ciclase 1/imunologia , Idoso , Anticorpos Monoclonais/efeitos adversos , Linfócitos B/imunologia , Linhagem Celular Tumoral , Dexametasona/administração & dosagem , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/imunologia , Granulócitos/efeitos dos fármacos , Granulócitos/imunologia , Humanos , Células Matadoras Naturais/imunologia , Lenalidomida , Masculino , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/imunologia , Linfócitos T , Talidomida/administração & dosagem , Talidomida/efeitos adversos
19.
Angiogenesis ; 20(4): 533-546, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28699046

RESUMO

BACKGROUND: Three-dimensional visualization of the brain vasculature and its interactions with surrounding cells may shed light on diseases where aberrant microvascular organization is involved, including glioblastoma (GBM). Intravital confocal imaging allows 3D visualization of microvascular structures and migration of cells in the brain of mice, however, with limited imaging depth. To enable comprehensive analysis of GBM and the brain microenvironment, in-depth 3D imaging methods are needed. Here, we employed methods for optical tissue clearing prior to 3D microscopy to visualize the brain microvasculature and routes of invasion of GBM cells. METHODS: We present a workflow for ex vivo imaging of optically cleared brain tumor tissues and subsequent computational modeling. This workflow was used for quantification of the microvasculature in relation to nuclear or cellular density in healthy mouse brain tissues and in human orthotopic, infiltrative GBM8 and E98 glioblastoma models. RESULTS: Ex vivo cleared mouse brain tissues had a >10-fold imaging depth as compared to intravital imaging of mouse brain in vivo. Imaging of optically cleared brain tissue allowed quantification of the 3D microvascular characteristics in healthy mouse brains and in tissues with diffuse, infiltrative growing GBM8 brain tumors. Detailed 3D visualization revealed the organization of tumor cells relative to the vasculature, in both gray matter and white matter regions, and patterns of multicellular GBM networks collectively invading the brain parenchyma. CONCLUSIONS: Optical tissue clearing opens new avenues for combined quantitative and 3D microscopic analysis of the topographical relationship between GBM cells and their microenvironment.


Assuntos
Neoplasias Encefálicas/patologia , Imageamento Tridimensional , Fenômenos Ópticos , Microambiente Tumoral , Animais , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Feminino , Fluorescência , Glioblastoma/irrigação sanguínea , Glioblastoma/patologia , Microscopia Intravital , Lectinas/metabolismo , Camundongos Nus , Microvasos/patologia , Neovascularização Patológica/patologia , Fótons
20.
Ann Vasc Surg ; 44: 400-407, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28546045

RESUMO

BACKGROUND: Standard therapy in acute peripheral arterial occlusion consists of intra-arterial catheter-guided thrombolysis. As microbubbles may be used as a carrier for fibrinolytic agents and targeted to adhere to the thrombus, we can theoretically deliver the thrombolytic medication locally following simple intravenous injection. In this intervention-controlled feasibility study, we compared intravenously administered targeted microbubbles incorporating urokinase and locally applied ultrasound, with intravenous urokinase and ultrasound alone. METHODS: In 9 pigs, a thrombus was created in the left external iliac artery, after which animals were assigned to either receive targeted microbubbles and urokinase (UK + tMB group) or urokinase alone (UK group). In both groups, ultrasound was applied at the site of the occlusion. Blood flow through the iliac artery and microcirculation of the affected limb were monitored and the animals were euthanized 1 hr after treatment. Autopsy was performed to determine the weight of the thrombus and to check for adverse effects. RESULTS: In the UK + tMB group (n = 5), median improvement in arterial blood flow was 5 mL/min (range 0-216). Improvement was seen in 3 of these 5 pigs at conclusion of the experiment. In the UK group (n = 4), median improvement in arterial blood flow was 0 mL/min (-10 to 18), with slight improvement in 1 of 4 pigs. Thrombus weight was significantly lower in the UK + tMB group (median 0.9383 g, range 0.885-1.2809) versus 1.5399 g (1.337-1.7628; P = 0.017). No adverse effects were seen. CONCLUSIONS: Based on this experiment, minimally invasive thrombolysis using intravenously administered targeted microbubbles carrying urokinase combined with local application of ultrasound is feasible and might accelerate thrombolysis compared with treatment with urokinase and ultrasound alone.


Assuntos
Fibrinolíticos/administração & dosagem , Artéria Ilíaca/efeitos dos fármacos , Microbolhas , Doença Arterial Periférica/tratamento farmacológico , Fosfolipídeos/administração & dosagem , Hexafluoreto de Enxofre/administração & dosagem , Terapia Trombolítica/métodos , Trombose/tratamento farmacológico , Terapia por Ultrassom/métodos , Ativador de Plasminogênio Tipo Uroquinase/administração & dosagem , Doença Aguda , Animais , Velocidade do Fluxo Sanguíneo , Modelos Animais de Doenças , Estudos de Viabilidade , Feminino , Artéria Ilíaca/patologia , Artéria Ilíaca/fisiopatologia , Injeções Intravenosas , Microcirculação , Doença Arterial Periférica/patologia , Doença Arterial Periférica/fisiopatologia , Fluxo Sanguíneo Regional , Sus scrofa , Trombose/patologia , Trombose/fisiopatologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA