Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life Sci Space Res (Amst) ; 37: 18-24, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37087175

RESUMO

The Committee on Space Research's (COSPAR) Planetary Protection Policy states that all types of missions to Venus are classified as Category II, as the planet has significant research interest relative to the processes of chemical evolution and the origin of life, but there is only a remote chance that terrestrial contamination can proliferate and compromise future investigations. "Remote chance" essentially implies the absence of environments where terrestrial organisms could survive and replicate. Hence, Category II missions only require simplified planetary protection documentation, including a planetary protection plan that outlines the intended or potential impact targets, brief Pre- and Post-launch analyses detailing impact strategies, and a Post-encounter and End-of-Mission Report. These requirements were applied in previous missions and are foreseen for the numerous new international missions planned for the exploration of Venus, which include NASA's VERITAS and DAVINCI missions, and ESA's EnVision mission. There are also several proposed missions including India's Shukrayaan-1, and Russia's Venera-D. These multiple plans for spacecraft coincide with a recent interest within the scientific community regarding the cloud layers of Venus, which have been suggested by some to be habitable environments. The proposed, privately funded, MIT/Rocket Lab Venus Life Finder mission is specifically designed to assess the habitability of the Venusian clouds and to search for signs of life. It includes up to three atmospheric probes, the first one targeting a launch in 2023. The COSPAR Panel on Planetary Protection evaluated scientific data that underpins the planetary protection requirements for Venus and the implications of this on the current policy. The Panel has done a thorough review of the current knowledge of the planet's conditions prevailing in the clouds. Based on the existing literature, we conclude that the environmental conditions within the Venusian clouds are orders of magnitude drier and more acidic than the tolerated survival limits of any known terrestrial extremophile organism. Because of this future orbital, landed or entry probe missions to Venus do not require extra planetary protection measures. This recommendation may be revised in the future if new observations or reanalysis of past data show any significant increment, of orders of magnitude, in the water content and the pH of the cloud layer.


Assuntos
Marte , Voo Espacial , Vênus , Planetas , Meio Ambiente Extraterreno , Contenção de Riscos Biológicos , Exobiologia
2.
Life Sci Space Res (Amst) ; 36: 27-35, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36682826

RESUMO

Planetary protection guidance for martian exploration has become a notable point of discussion over the last decade. This is due to increased scientific interest in the habitability of the red planet with updated techniques, missions becoming more attainable by smaller space agencies, and both the private sector and governments engaging in activities to facilitate commercial opportunities and human-crewed missions. The international standards for planetary protection have been developed through consultation with the scientific community and the space agencies by the Committee on Space Research's (COSPAR) Panel on Planetary Protection, which provides guidance for compliance with the Outer Space Treaty of 1967. In 2021, the Panel evaluated recent scientific data and literature regarding the planetary protection requirements for Mars and the implications of this on the guidelines. In this paper, we discuss the COSPAR Planetary Protection Policy for Mars, review the new scientific findings and discuss the next steps required to enable the next generation of robotic missions to Mars.


Assuntos
Marte , Procedimentos Cirúrgicos Robóticos , Voo Espacial , Humanos , Planetas , Meio Ambiente Extraterreno , Astronave , Exobiologia/métodos , Contenção de Riscos Biológicos , Política Pública
3.
Astrobiology ; 22(S1): S186-S216, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35653292

RESUMO

The Committee on Space Research (COSPAR) Sample Safety Assessment Framework (SSAF) has been developed by a COSPAR appointed Working Group. The objective of the sample safety assessment would be to evaluate whether samples returned from Mars could be harmful for Earth's systems (e.g., environment, biosphere, geochemical cycles). During the Working Group's deliberations, it became clear that a comprehensive assessment to predict the effects of introducing life in new environments or ecologies is difficult and practically impossible, even for terrestrial life and certainly more so for unknown extraterrestrial life. To manage expectations, the scope of the SSAF was adjusted to evaluate only whether the presence of martian life can be excluded in samples returned from Mars. If the presence of martian life cannot be excluded, a Hold & Critical Review must be established to evaluate the risk management measures and decide on the next steps. The SSAF starts from a positive hypothesis (there is martian life in the samples), which is complementary to the null-hypothesis (there is no martian life in the samples) typically used for science. Testing the positive hypothesis includes four elements: (1) Bayesian statistics, (2) subsampling strategy, (3) test sequence, and (4) decision criteria. The test sequence capability covers self-replicating and non-self-replicating biology and biologically active molecules. Most of the investigations associated with the SSAF would need to be carried out within biological containment. The SSAF is described in sufficient detail to support planning activities for a Sample Receiving Facility (SRF) and for preparing science announcements, while at the same time acknowledging that further work is required before a detailed Sample Safety Assessment Protocol (SSAP) can be developed. The three major open issues to be addressed to optimize and implement the SSAF are (1) setting a value for the level of assurance to effectively exclude the presence of martian life in the samples, (2) carrying out an analogue test program, and (3) acquiring relevant contamination knowledge from all Mars Sample Return (MSR) flight and ground elements. Although the SSAF was developed specifically for assessing samples from Mars in the context of the currently planned NASA-ESA MSR Campaign, this framework and the basic safety approach are applicable to any other Mars sample return mission concept, with minor adjustments in the execution part related to the specific nature of the samples to be returned. The SSAF is also considered a sound basis for other COSPAR Planetary Protection Category V, restricted Earth return missions beyond Mars. It is anticipated that the SSAF will be subject to future review by the various MSR stakeholders.


Assuntos
Marte , Voo Espacial , Teorema de Bayes , Meio Ambiente Extraterreno , Pesquisa Espacial
4.
Front Microbiol ; 9: 2999, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564224

RESUMO

In soil, organic matter and mineral particles (soil particles; SPs) strongly influence the bio-available fraction of organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), and the metabolic activity of bacteria. However, the effect of SPs as well as comparative approaches to discriminate the metabolic responses to PAHs from those to simple carbon sources are seldom considered in mineralization experiments, limiting our knowledge concerning the dynamics of contaminants in soil. In this study, the metabolic profile of a model PAH-degrading bacterium, Pseudomonas putida G7, grown in the absence and presence of different SPs (i.e., sand, clays and humic acids), using either phenanthrene or glucose as the sole carbon and energy source, was characterized using vibrational spectroscopy (i.e., FT-Raman and FT-IR spectroscopy) and multivariate classification analysis (i.e., PLS-DA). The different type of SPs specifically altered the metabolic profile of P. putida, especially in combination with phenanthrene. In comparison to the cells grown in the absence of SPs, sand induced no remarkable change in the metabolic profile of the cells, whereas clays and humic acids affected it the most, as revealed by the higher discriminative accuracy (R 2, RMSEP and sensitivity) of the PLS-DA for those conditions. With respect to the carbon-source (phenanthrene vs. glucose), no effect on the metabolic profile was evident in the absence of SPs or in the presence of sand. On the other hand, with clays and humic acids, more pronounced spectral clusters between cells grown on glucose or on phenanthrene were evident, suggesting that these SPs modify the way cells access and metabolize PAHs. The macromolecular changes regarded mainly protein secondary structures (a shift from α-helices to ß-sheets), amino acid levels, nucleic acid conformation and cell wall carbohydrates. Our results provide new interesting evidences that SPs specifically interact with PAHs in defining bacteria metabolic profiles and further emphasize the importance of studying the interaction of bacteria with their surrounding matrix to deeply understand PAHs degradation in soils.

5.
Front Microbiol ; 7: 423, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27064911

RESUMO

Bacteria living in oxic environments experience iron deficiency due to limited solubility and slow dissolution kinetics of iron-bearing minerals. To cope with iron deprivation, aerobic bacteria have evolved various strategies, including release of siderophores or other organic acids that scavenge external Fe(III) and deliver it to the cells. This research investigated the role of siderophores produced by Pseudomonas aeruginosa in the acquisition of Fe(III) from two iron-bearing colloidal nontronites (NAu-1 and NAu-2), comparing differences in bioavailability related with site occupancy and distribution of Fe(III) in the two lattices. To avoid both the direct contact of the mineral colloids with the bacterial cells and the uncontrolled particle aggregation, nontronite suspensions were homogenously dispersed in a porous silica gel before the dissolution experiments. A multiparametric approach coupling UV-vis spectroscopy and spectral decomposition algorithm was implemented to monitor simultaneously the solubilisation of Fe and the production of pyoverdine in microplate-based batch experiments. Both nontronites released Fe in a particle concentration-dependent manner when incubated with the wild-type P. aeruginosa strain, however iron released from NAu-2 was substantially greater than from NAu-1. The profile of organic acids produced in both cases was similar and may not account for the difference in the iron dissolution efficiency. In contrast, a pyoverdine-deficient mutant was unable to mobilize Fe(III) from either nontronite, whereas iron dissolution occurred in abiotic experiments conducted with purified pyoverdine. Overall, our data provide evidence that P. aeruginosa indirectly mobilize Fe from nontronites primarily through the production of pyoverdine. The structural Fe present on the edges of NAu-2 rather than NAu-1 particles appears to be more bio-accessible, indicating that the distribution of Fe, in the tetrahedron and/or in the octahedron sites, governs the solubilisation process. Furthermore, we also revealed that P. aeruginosa could acquire iron when in direct contact with mineral particles in a siderophore-independent manner.

6.
Chemosphere ; 149: 130-6, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26855216

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) have a toxic effect on plants, which limits the efficiency of phytomanagement of contaminated soils. The mechanisms underlying their toxicity are not fully understood. A cultivation experiment was carried out with maize, used as model plant, exposed to sand spiked with phenanthrene (50 or 150 mg kg(-1) dw). Epi-fluorescence microscopic observation of root sections was used to assess suberization of exodermis and endodermis and phenanthrene localization along the primary root length. For 10 days of cultivation, exodermis and endodermis suberization of exposed maize was more extensive. However, after 20 days of exposure, exodermis and endodermis of non-exposed roots were totally suberized, whilst PHE-exposed roots where less suberized. Early extensive suberization may act as barrier against PHE penetration, however longer exposure inhibits root maturation. Phenanthrene patches were located only near suberized exodermis and endodermis, which may therefore act as retention zones, where the hydrophobic phenanthrene accumulates during its radial transport.


Assuntos
Monitoramento Ambiental , Fenantrenos/toxicidade , Raízes de Plantas/metabolismo , Zea mays/metabolismo , Lipídeos , Fenantrenos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Zea mays/efeitos dos fármacos
7.
PLoS One ; 10(3): e0122848, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25822488

RESUMO

The wide collection of currently available fluorescent proteins (FPs) offers new possibilities for multicolor reporter gene-based studies of bacterial functions. However, the simultaneous use of multiple FPs is often limited by the bleed-through of their emission spectra. Here we introduce an original approach for detection and separation of multiple overlapping fluorescent signals from mixtures of bioreporters strains. The proposed method relies on the coupling of synchronous fluorescent spectroscopy (SFS) with blind spectral decomposition achieved by the Canonical Polyadic (CP) decomposition (also known as Candecomp/Parafac) of three-dimensional data arrays. Due to the substantial narrowing of FP emission spectra and sensitive detection of multiple FPs in a one-step scan, SFS reduced spectral overlap and improved the selectivity of the CP unmixing procedure. When tested on mixtures of labeled E. coli strains, the SFS/CP approach could easily extract the contribution of at least four overlapping FPs. Furthermore, it allowed to simultaneously monitor the expression of three iron responsive genes and pyoverdine production in P. aeruginosa. Implemented in a convenient microplate format, this multiplex fluorescent reporter method provides a useful tool to study complex processes with different variables in bacterial systems.


Assuntos
Escherichia coli/genética , Pseudomonas aeruginosa/metabolismo , Espectrometria de Fluorescência/métodos , Cor , Homeostase , Ferro/metabolismo , Proteínas Luminescentes/genética
8.
FEMS Microbiol Lett ; 354(1): 37-45, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24628667

RESUMO

To simulate iron consumption in soils, iron leaching from silicate minerals due to three heterotrophic bacterial strains and a chemical treatment was studied using hybrid silica gel (HSG) doped with two phyllosilicates, nontronite (NAu-2) or low-iron-content montmorillonite (SWy-2). HSG methodology, a novel way of separating bacteria cells from a colloidal mineral source, consisted in embedding colloidal mineral particles into an amorphous porous silica matrix using a classical sol-gel procedure. Pantoae agglomerans PA1 and Rahnella aquatilis RA1 were isolated from silicate-rich soils, that is, beech and wheat rhizospheres (Vosges, France); Burkholderia sp. G5 was selected from acidic and nutrient-poor podzol soils (Vosges, France). Fe release from clay minerals and production of bacterial metabolites, that is, low molecular weight organic acids (LMWOA) and siderophores, were monitored. Two LMWOA profiles were observed with major gluconate production (> 9000 µM) for Burkholderia sp. G5 and moderate production of lactate, acetate, propionate, formate, oxalate, citrate, and succinate (< 300 µM) for R. aquatilis RA1 and P. agglomerans PA1. HSG demonstrated its usefulness in revealing clay mineral-microorganisms interactions. The effect of bacterial exsudates was clearly separated from physical contact effect.


Assuntos
Burkholderia/metabolismo , Enterobacteriaceae/metabolismo , Rahnella/metabolismo , Sílica Gel/metabolismo , Microbiologia do Solo , Burkholderia/genética , Burkholderia/crescimento & desenvolvimento , Burkholderia/isolamento & purificação , Enterobacteriaceae/genética , Enterobacteriaceae/crescimento & desenvolvimento , Enterobacteriaceae/isolamento & purificação , Ferro/metabolismo , Dados de Sequência Molecular , Rahnella/genética , Rahnella/crescimento & desenvolvimento , Rahnella/isolamento & purificação
9.
Appl Environ Microbiol ; 79(4): 1400-2, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23220957

RESUMO

Water-dispersible amphiphilic surface-engineered quantum dots (QDs) were found to be strongly accumulated within discrete zones of the exopolymer network of Shewanella oneidensis MR-1 biofilms, but not on the cell surfaces. These microdomains showed a patterned distribution in the exopolymer matrix, which led to a restricted diffusion of the amphiphilic nanoparticles.


Assuntos
Biofilmes/crescimento & desenvolvimento , Matriz Extracelular/metabolismo , Polímeros/química , Polímeros/metabolismo , Shewanella/fisiologia , Interações Hidrofóbicas e Hidrofílicas , Pontos Quânticos , Shewanella/metabolismo , Coloração e Rotulagem , Tensoativos/metabolismo
10.
J Colloid Interface Sci ; 362(2): 317-24, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21807370

RESUMO

Four colloidal-size fractions of strongly anisotropic particles of nontronite (NAu-2) having different ratios of basal to edge surfaces were incubated in the presence of heterotrophic soil bacteria to evaluate how changes in mineral surface reactivity influence microbial dissolution rate of minerals. To avoid any particle aggregation, which could change the reactive surface area available for dissolution, NAu-2 particles were immobilized in a biocompatible TEOS-derived silica matrix. The resulting hybrid silica gels support bacterial growth with NAu-2 as the sole source of Fe and Mg. Upon incubation of the hybrid material with bacteria, between 0.3% and 7.5% of the total Fe included in the mineral lattice was released with a concomitant pH decrease. For a given pH value, the amount of released Fe varied between strains and was two to twelve-fold higher than under abiotic conditions. This indicates that complexing agents produced by bacteria play an important role in the dissolution process. However, in contrast with proton-promoted NAu-2 dissolution (abiotic incubations) that was negatively correlated with particle size, bacterial-enhanced dissolution was constant for all size fractions used. We conclude that bio-dissolution of nontronite particles under acidic conditions seems to be controlled by bacterial metabolism rather than by the surface reactivity of mineral.


Assuntos
Bactérias/metabolismo , Minerais/metabolismo , Silicatos de Alumínio , Bactérias/crescimento & desenvolvimento , Argila , Coloides , Ouro , Concentração de Íons de Hidrogênio , Nitrogênio , Porosidade , Sílica Gel , Solubilidade
11.
Biomaterials ; 32(23): 5459-70, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21549423

RESUMO

Quantum dots (QDs) nanoprobes are emerging as alternatives to small-molecule fluorescent probes in biomedical technology. This paper reports an efficient and rapid method of producing highly dispersed and stable CdSe-core QDs with a hydrophobic gradient. Amphiphilic core/shell CdSe/ZnS QDs were prepared by ligand exchange at the surface of lipophilic CdSe/ZnS QDs using the dihydrolipoic acid (DHLA) dithiol ligand linked to leucine or phenylalanine amino acids. Contact angle relaxations on a hydrophobic surface and surface tension measurements indicated that aqueous dispersions of CdSe/ZnS@DHLA-Leu or CdSe/ZnS@DHLA-Phe QDs exhibit increased hydrophobicity compared to CdSe-core QDs capped by the hydrophilic 3-mercaptopropionic acid (MPA) ligand. We found that the surface functional groups and the ligand density at the periphery of these QDs significantly dictated their interactions with a complex biological matrix called biofilm. Using fluorescence confocal microscopy and an autocorrelation function (semi-variogram), we demonstrated that MPA-capped QDs were homogeneously associated to the biopolymers, while amphiphilic CdSe/ZnS@DHLA-Leu or CdSe/ZnS@DHLA-Phe QDs were specifically confined allowing identification of hydrophobic microdomains of the biofilms. Results obtained clearly point out that the final destination of QDs in biofilms can properly be controlled by an appropriate design of surface ligands.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes , Interações Hidrofóbicas e Hidrofílicas , Pontos Quânticos , Coloração e Rotulagem/métodos , Ácido 3-Mercaptopropiônico/química , Compostos de Cádmio/química , Difusão , Leucina/química , Luz , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Estrutura Molecular , Tamanho da Partícula , Fenilalanina/química , Espectroscopia Fotoeletrônica , Politetrafluoretileno/química , Espalhamento de Radiação , Compostos de Selênio/química , Shewanella/fisiologia , Espectrometria de Fluorescência , Eletricidade Estática , Sulfetos/química , Tensão Superficial , Ácido Tióctico/análogos & derivados , Ácido Tióctico/química , Compostos de Zinco/química
12.
J Colloid Interface Sci ; 343(2): 433-8, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20044096

RESUMO

Anisotropic textural and crystallographic properties of phyllosilicate particles often influence the mineral weathering rate. The purpose of this study was to investigate how the changes in mineral surfaces (basal vs. edge) as a result of changes in crystal size control the dissolution of the mineral. Different nano-size fractions of Na-exchanged nontronites (NAu2 and NAu1) were immobilized in a silica gel and then incubated under acidic conditions using HNO(3) at 28 degrees C for 5 days. For each sample, the dissolution behavior was analyzed by measuring the amount of iron released from the mineral lattice. The results showed that for a given pH, a decrease in particle size significantly increased NAu2 and NAu1 dissolution. At pH 1.5, 7.2% of the total iron of the highest size sample of NAu2 was released in solution whereas this proportion increased up to 25% for the smallest size fraction. The percentage of total iron extracted from NAu1 at the same pH (1.5) was less important: 3.5% and 6.5% for higher and smaller size fractions, respectively. The observed increase in dissolution was not directly correlated to the increase in the amount of edge faces, suggesting that all mineral surfaces contributed to mineral dissolution. In the present case this may be related to the fact that 8% and 2% of total iron of NAu2 and NAu1, respectively, are located in the tetrahedral sheet. In conclusion, the basal surface of nontronites plays an important role in the weathering process.

13.
Chemosphere ; 62(1): 163-70, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16325652

RESUMO

An interactive metal-based potentiometric titration method has been developed using an ion selective electrode for studying the sorption of metal cations. The accuracy of this technique was verified by analyzing the metal sorption mechanism for the biomass of Rhizopus arrhizus fungus and diatomite, two dissimilar materials (organic and mineral, strong sorbent and weak sorbent) of a different order of cation exchange capacity. The problem of the initial electrochemical potential was addressed identifying the usefulness of a Na-sulfonic resin as a strong chelating agent applied before the beginning of sorption titration experiments so that the titration curves and the sorption uptake could be quantitatively compared. The resin stabilized the initial electrochemical potential to -405+/-5 mV corresponding to 2 micro gl(-1) of lead concentration in solution. The amounts of lead sorbed by R. arrhizus biomass and diatomite were 0.9 mmol g(-1) (C(e)=5.16 x 10(-2)mM) and 0.052 mmol g(-1) (C(e)=5.97 x 10(-2) mM), respectively. Lead sorption by the fungal biomass was pinpointed to at least two types of chemical active sites. The first type was distinguished by high reactivity and a low number of sites whereas the other was characterized by their higher number and lower reactivity.


Assuntos
Terra de Diatomáceas/química , Metais/análise , Rhizopus/química , Eliminação de Resíduos Líquidos/métodos , Adsorção , Biomassa , Cátions , Eletrodos Seletivos de Íons , Chumbo/análise , Potenciometria , Resinas Sintéticas/química
14.
J Colloid Interface Sci ; 292(2): 537-43, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-15979634

RESUMO

Acid-base and metal-based potentiometric titration methods were used to analyze sorption mechanisms of lead by Rhizopus arrhizus fungal biomass. Biosorption was not considered globally but as the result of successive sorption reactions on various binding sites with different selectivities. Precipitation occurred rapidly when lead concentration increased. Lead was sorbed essentially by carboxylic groups and by phosphates and sulfonates (less abundant) of the organic matter. The lead affinity to carboxylic, sulfonate and phosphate binding sites depended on the association coefficient with proton or counter-ion and on the spatial distribution of the surface sites promoting the formation of mono- or bi-dentate complexes. Chemical bonds and binding sites were confirmed using microscopic and spectroscopic techniques (IR, MET-EDAX). It appeared that although the total organic acidity was reached, number of ionized and free carboxylic groups were not involved in lead sorption reactions. In spite of lead speciation in the solution, surface micro-precipitation was observed and the two processes, surface adsorption and micro-precipitation, are sequential and possibly overlapping. At low concentrations (<10(-6) M) adsorption is the dominant phenomenon and beyond (>10(-5) M) surface clusters appeared before the predicted solution precipitation phenomenon.


Assuntos
Chumbo/química , Rhizopus/química , Adsorção , Biomassa , Microscopia Eletrônica de Transmissão e Varredura/métodos , Potenciometria , Sensibilidade e Especificidade , Propriedades de Superfície , Titulometria
15.
Water Res ; 39(4): 579-88, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15707630

RESUMO

The high-resolution potentiometric titration was used as a physico-chemical method to study the acid properties of selected biosorbent materials in order to quantify the functional acidic groups for sorption and to determine their affinities by considering their partial or total ionization equilibrium reactions. The Gran's method and the Henderson-Hasselbach's equation were employed in establishing the partition of the total acidity as associated with strong, weak and very weak acidic chemical active groups. The differences in the total organic acidity (A(TO)) for the two selected types of bacteria and two mycelia revealed by this method were explained by the chemical composition of their cell walls. The total organic acidities obtained were 3.87 me g(-1) for Thiobacillus ferrooxidans, 1.31 me g(-1) for Corynebacterium glutamicum, 0.81 me g(-1) for Aspergillus niger and 2.54 me g(-1) for Rhizopus arrhizus. The links between the activity of protons and the sorption capacities of the selected bioorganic matters were established. Sorption of lead by C. glutamicum and R. arrhizus biomass indicated an optimum pH of 6. It appeared that 64% (Pb(uptake)=0.48 me g(-1)) and 38% (Pb(uptake)=0.28 me g(-1)) of A(TO) were involved during lead sorption onto R. arrhizus and C. glutamicum, respectively. The applications of titration techniques become a powerful tool for the characterization of heterogeneous materials involved in biosorption and bioremediation processes.


Assuntos
Biomassa , Desintoxicação por Sorção , Eliminação de Resíduos Líquidos/métodos , Aspergillus niger/metabolismo , Sítios de Ligação , Biodegradação Ambiental , Corynebacterium glutamicum/metabolismo , Concentração de Íons de Hidrogênio , Resíduos Industriais , Chumbo/química , Chumbo/metabolismo , Rhizopus/metabolismo , Hidróxido de Sódio/química , Thiobacillus/metabolismo , Titulometria/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA