RESUMO
We explored the presence of microplastics in the Finnish Arctic Sámi home area. A dialogue between Indigenous knowledge and scientific field work produced data about microplastics in remote wilderness aquatic ecosystems. Methods included geographical Indigenous knowledge analysis, water sampling with fraction filtration, and imaging Fourier transform infrared spectroscopy. The MPs found were small; the mean particle size was 126 ± 121 µm. Particle concentrations of MPs in freshwater and marine samples varied between 45 and 423 MPs m-3 and the most common polymer types were polyethylene, polypropylene, and polyethylene terephthalate. In conclusion, because microplastics are present even in the wilderness areas, their abundance should be monitored to assess plastic pollution in the relatively pristine Arctic environments. Sámi Indigenous knowledge proved to be a beneficial and important initiator, because locals recognize the possible sources and transport pathways of plastic litter, and practical sampling sites in the complex freshwater systems of the area.
Assuntos
Monitoramento Ambiental , Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Regiões Árticas , Finlândia , Poluentes Químicos da Água/análise , Água Doce/química , Plásticos/análiseRESUMO
Arctic Indigenous Peoples are among the most exposed humans when it comes to foodborne mercury (Hg). In response, Hg monitoring and research have been on-going in the circumpolar Arctic since about 1991; this work has been mainly possible through the involvement of Arctic Indigenous Peoples. The present overview was initially conducted in the context of a broader assessment of Hg research organized by the Arctic Monitoring and Assessment Programme. This article provides examples of Indigenous Peoples' contributions to Hg monitoring and research in the Arctic, and discusses approaches that could be used, and improved upon, when carrying out future activities. Over 40 mercury projects conducted with/by Indigenous Peoples are identified for different circumpolar regions including the U.S., Canada, Greenland, Sweden, Finland, and Russia as well as instances where Indigenous Knowledge contributed to the understanding of Hg contamination in the Arctic. Perspectives and visions of future Hg research as well as recommendations are presented. The establishment of collaborative processes and partnership/co-production approaches with scientists and Indigenous Peoples, using good communication practices and transparency in research activities, are key to the success of research and monitoring activities in the Arctic. Sustainable funding for community-driven monitoring and research programs in Arctic countries would be beneficial and assist in developing more research/monitoring capacity and would promote a more holistic approach to understanding Hg in the Arctic. These activities should be well connected to circumpolar/international initiatives to ensure broader availability of the information and uptake in policy development.
Assuntos
Mercúrio , Regiões Árticas , Canadá , Groenlândia , Humanos , Povos IndígenasRESUMO
Proactive and coordinated action to mitigate and adapt to climate change will be essential for achieving the healthy, resilient, safe, sustainably harvested and biodiverse ocean that the UN Decade of Ocean Science and sustainable development goals (SDGs) seek. Ocean-based mitigation actions could contribute 12% of the emissions reductions required by 2030 to keep warming to less than 1.5 ºC but, because substantial warming is already locked in, extensive adaptation action is also needed. Here, as part of the Future Seas project, we use a "foresighting/hindcasting" technique to describe two scenarios for 2030 in the context of climate change mitigation and adaptation for ocean systems. The "business-as-usual" future is expected if current trends continue, while an alternative future could be realised if society were to effectively use available data and knowledge to push as far as possible towards achieving the UN SDGs. We identify three drivers that differentiate between these alternative futures: (i) appetite for climate action, (ii) handling extreme events, and (iii) climate interventions. Actions that could navigate towards the optimistic, sustainable and technically achievable future include:(i)proactive creation and enhancement of economic incentives for mitigation and adaptation;(ii)supporting the proliferation of local initiatives to spur a global transformation;(iii)enhancing proactive coastal adaptation management;(iv)investing in research to support adaptation to emerging risks;(v)deploying marine-based renewable energy;(vi)deploying marine-based negative emissions technologies;(vii)developing and assessing solar radiation management approaches; and(viii)deploying appropriate solar radiation management approaches to help safeguard critical ecosystems. Supplementary Information: The online version contains supplementary material available at 10.1007/s11160-021-09678-4.
RESUMO
Coastal Indigenous and Traditional communities are starting to see changes to their lives from climate change, whether this is from species range changes or displacement from land changes. For many of these communities, the ability to adequately adapt to these changes is limited by the governance structures they are required to live within, which differ from their customary practices and culture. In November 2019, a group of Indigenous and Traditional Peoples, attended the Future Seas 2030 workshop and discussed the consequences of climate change, the biggest barriers for their communities, and barriers for using traditional knowledge in order to contribute towards a more sustainable future that in the end will benefit all of earth's people. The aim of this workshop was to highlight and give a voice to the various backgrounds and real-life situations impacting on some of the world's Indigenous and Traditional communities whose connection with the oceans and coasts have been disrupted. This paper presents these issues of oppression, colonisation, language and agency, making it difficult for these groups to contribute to the current management of oceans and coasts, and asks scientists and practitioners in this space to be allies and enable the needed shift to earth's guardians taking a leading role in nurturing her for our future.
RESUMO
One of the most pronounced effects of climate change on the world's oceans is the (generally) poleward movement of species and fishery stocks in response to increasing water temperatures. In some regions, such redistributions are already causing dramatic shifts in marine socioecological systems, profoundly altering ecosystem structure and function, challenging domestic and international fisheries, and impacting on human communities. Such effects are expected to become increasingly widespread as waters continue to warm and species ranges continue to shift. Actions taken over the coming decade (2021-2030) can help us adapt to species redistributions and minimise negative impacts on ecosystems and human communities, achieving a more sustainable future in the face of ecosystem change. We describe key drivers related to climate-driven species redistributions that are likely to have a high impact and influence on whether a sustainable future is achievable by 2030. We posit two different futures-a 'business as usual' future and a technically achievable and more sustainable future, aligned with the Sustainable Development Goals. We then identify concrete actions that provide a pathway towards the more sustainable 2030 and that acknowledge and include Indigenous perspectives. Achieving this sustainable future will depend on improved monitoring and detection, and on adaptive, cooperative management to proactively respond to the challenge of species redistribution. We synthesise examples of such actions as the basis of a strategic approach to tackle this global-scale challenge for the benefit of humanity and ecosystems. Supplementary Information: The online version contains supplementary material available at 10.1007/s11160-021-09641-3.
Assuntos
Biodiversidade , Diversidade Cultural , Idioma , Brasil , Europa (Continente) , Humanos , Linguística , Senegal , TaiwanRESUMO
Climate change is driving a pervasive global redistribution of the planet's species. Species redistribution poses new questions for the study of ecosystems, conservation science and human societies that require a coordinated and integrated approach. Here we review recent progress, key gaps and strategic directions in this nascent research area, emphasising emerging themes in species redistribution biology, the importance of understanding underlying drivers and the need to anticipate novel outcomes of changes in species ranges. We highlight that species redistribution has manifest implications across multiple temporal and spatial scales and from genes to ecosystems. Understanding range shifts from ecological, physiological, genetic and biogeographical perspectives is essential for informing changing paradigms in conservation science and for designing conservation strategies that incorporate changing population connectivity and advance adaptation to climate change. Species redistributions present challenges for human well-being, environmental management and sustainable development. By synthesising recent approaches, theories and tools, our review establishes an interdisciplinary foundation for the development of future research on species redistribution. Specifically, we demonstrate how ecological, conservation and social research on species redistribution can best be achieved by working across disciplinary boundaries to develop and implement solutions to climate change challenges. Future studies should therefore integrate existing and complementary scientific frameworks while incorporating social science and human-centred approaches. Finally, we emphasise that the best science will not be useful unless more scientists engage with managers, policy makers and the public to develop responsible and socially acceptable options for the global challenges arising from species redistributions.
Assuntos
Mudança Climática , Conservação dos Recursos Naturais/métodos , Ecologia/métodos , Ciências Sociais/métodos , Animais , Humanos , Especificidade da EspécieRESUMO
Distributions of Earth's species are changing at accelerating rates, increasingly driven by human-mediated climate change. Such changes are already altering the composition of ecological communities, but beyond conservation of natural systems, how and why does this matter? We review evidence that climate-driven species redistribution at regional to global scales affects ecosystem functioning, human well-being, and the dynamics of climate change itself. Production of natural resources required for food security, patterns of disease transmission, and processes of carbon sequestration are all altered by changes in species distribution. Consideration of these effects of biodiversity redistribution is critical yet lacking in most mitigation and adaptation strategies, including the United Nation's Sustainable Development Goals.
Assuntos
Biodiversidade , Mudança Climática , Animais , Abastecimento de Alimentos , Saúde , HumanosRESUMO
This work reports on the performance of a segmented polymer electrochromic display that was fabricated with solution-based processes in ambient atmosphere. An encapsulation process and the combination of structured wells for the polymer electrochrome and electrolyte layers as well as the use of a preoxidized counter polymer yields high contrasts and fast switching speeds. Asymmetric driving-with respect to time-of the display is investigated for the first time and the degradation effects in the electrochrome layer are analyzed and addressed to yield a stable device exceeding 100,000 switching cycles. A printed circuit board was integrated with the display, allowing the device to be run as a clock, where the segments only required short pulses to switch without the need for a constant current to maintain its state. Such an application pairs well with the advantages of electrochromic polymers, drawing on its high contrast, stability, and ability to maintain its colored or colorless state without the need for a constant power supply, to demonstrate the promise as well as the challenges of developing more sophisticated electrochromic devices.
RESUMO
This article explores the pioneering potential of communal visual-optic histories which are recorded, painted, documented, or otherwise expressed. These materials provide collective meanings of an image or visual material within a specific cultural group. They potentially provide a new method for monitoring and documenting changes to ecosystem health and species distribution, which can effectively inform society and decision makers of Arctic change. These visual histories can be positioned in a continuum that extends from rock art to digital photography. They find their expressions in forms ranging from images to the oral recording of knowledge and operate on a given cultural context. For monitoring efforts in the changing boreal zone and Arctic, a respectful engagement with visual histories can reveal emerging aspects of change. The examples from North America and case studies from Eurasia in this article include Inuit sea ice observations, Yu'pik visual traditions of masks, fish die-offs in a sub-boreal catchment area, permafrost melt in the Siberian tundra and early, first detection of a scarabaeid beetle outbreak, a Southern species in the Skolt Sámi area. The pros and cons of using these histories and their reliability are reviewed.
Assuntos
Mudança Climática , Participação da Comunidade , Conservação dos Recursos Naturais , Monitoramento Ambiental/métodos , Historiografia , Regiões Árticas , Meio Ambiente , Europa (Continente) , América do Norte , Federação RussaRESUMO
This article explores the peat production impacts on Jukajoki river in Finland by implementing discourse analysis. Four discourses are explored: state truth statements; company statements that are in close proximity of state power; discourses provided by the local community Selkie, who provided counter-narratives to the official views; and finally media and related discourses. In conclusion, the discourses by the state and closely related actors (A-B) comprised implementation of their power and justifying it at the expense of those who are excluded from such power, in this case the village. The village narrative (C) contains elements that strongly contradict the statements provided by those with power. The results indicate local communities should be taken more seriously. The systematic denial of local peoples' rights should be reviewed, and local participation in environmental permit assessments implemented.