Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(53): 113859-113873, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37855959

RESUMO

Pesticides, synthetic fragrances and polycyclic aromatic hydrocarbons contaminated two glacier-fed streams (Amola, Mandrone) and one spring (Grostè) in the Italian Alps. Ten compounds (chlorpyrifos (CPY), chlorpyrifos-methyl (CPY-m), galaxolide (HHCB), tonalide (AHTN), fluorene (Flu), phenanthrene (Phen), anthracene (Ant), fluoranthene (Fl), pyrene (Pyr), benzo[a]anthracene (BaA)) accumulated in aquatic larvae of chironomids (Diamesa steinboecki, D. latitarsis, D. bertrami, D. tonsa, D. zernyi, Pseudokiefferiella parva, Orthocladiinae) and tipulids. Their tissue concentrations (detected by gas chromatography coupled with mass spectrometry) ranged from 1.1 ± 0.1 ng/g d.w. (= dry weight) (CPY-m in D. tonsa from Amola) to 68.0 ± 9.1 ng/g d.w. (Pyr in D. steinboecki from Mandrone). HHCB, AHTN, and CPY, with one exception, were accumulated by all aquatic insects. Six compounds (CPY, CPY-m, HHCB, AHTN, Fl, Pyr) also contaminated carabids (Nebria germarii, N. castanea, N. jockischii) predating adults of merolimnic insects. Their tissue concentrations ranged from 1.1 ± 0.3 ng/g d.w. (CPY-m in N. germarii from Mandrone) to 84.6 ± 0.3 ng/g d.w. (HHCB in N. castanea from Grostè). HHCB and AHTN were accumulated by all Nebria species. Intersite and interspecies differences were observed, which might be attributed to different environmental contamination levels. There was a stronger similarity between species from the same site than among the same species from different sites, suggesting that uptake is not species specific. At all sites, the concentration of xenobiotics was higher in larvae than in water and comparable or higher in carabids than in larvae from the same site, suggesting trophic transfer by emerging aquatic insects to their riparian predators.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Humanos , Adulto , Animais , Camada de Gelo , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Policíclicos Aromáticos/análise , Antracenos , Insetos , Poluentes Químicos da Água/análise , Benzopiranos/análise
2.
Animals (Basel) ; 13(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37106970

RESUMO

Human-induced environmental alterations in the Alps may importantly affect small mammal species, but evidence in this sense is limited. We live-trapped small rodents in the Central-Eastern Italian Alps in three close-by habitat types (rocky scree, alpine grassland, and heath) at 2100 m a.s.l. during summer-fall, in 1997 and 2016. We compared small rodent assemblages through a Redundancy Detrended Analysis (RDA). In both surveys, we detected two specialist species, i.e., the common vole (Microtus arvalis) and the snow vole (Chionomys nivalis), and, unexpectedly, the forest generalist bank vole (Myodes glareolus). In 1997, grassland was mainly occupied by the common vole, while the bank vole and the snow vole were sympatric in the other habitats. In 2016, the snow vole was detected only in the scree, while other species did not show distribution changes. We discuss a series of hypotheses that might have driven the differences observed across decades, among which is a species-specific response to abiotic and biotic environmental alterations, with the alpine habitat specialist moving out of sub-optimal habitats. We encourage further research on this topic, e.g., via long-term longitudinal studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA