Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 285(31): 23755-62, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20504771

RESUMO

Toll-like receptors (TLRs) play a central role in host defense by inducing inflammatory and adaptive immune responses following infection. Drugs that target TLRs are of considerable interest as potential inflammatory regulators, vaccine adjuvants, and novel immunotherapeutics. TLR2, in cooperation with either TLR1 or TLR6, mediates responses to a wide variety of microbial products as well as products of host tissue damage. In an effort to understand the structural basis of TLR2 recognition and uncover novel TLR2 agonists, a synthetic chemical library of 24,000 compounds was screened using an IL-8-driven luciferase reporter in cells expressing these human receptors. The screening yielded several novel TLR2-dependent activators that utilize TLR1, TLR6, or both as co-receptors. These novel small molecule compounds are aromatic in nature and structurally unrelated to any known TLR2 agonists. The three most potent compounds do not exhibit synergistic activity, nor do they act as pseudoantagonists toward natural TLR2 activators. Interestingly, two of the compounds exhibit species specificity and are inactive toward murine peritoneal macrophages. Mutational analysis reveals that although the central extracellular region of TLR1 is required for stimulation, there are subtle differences in the mechanism of stimulation mediated by the synthetic compounds in comparison with natural lipoprotein agonists. The three most potent compounds activate cells in the nanomolar range and stimulate cytokine production from human peripheral blood monocytes. Our results confirm the utility of high throughput screens to uncover novel synthetic TLR2 agonists that may be of therapeutic benefit.


Assuntos
Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/química , Animais , Técnicas de Química Combinatória/métodos , Simulação por Computador , Citocinas/metabolismo , Análise Mutacional de DNA , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Imunoterapia/métodos , Interleucina-8/química , Macrófagos/metabolismo , Camundongos , Monócitos/metabolismo , Relação Estrutura-Atividade
2.
J Immunol ; 184(9): 5094-103, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20348427

RESUMO

TLRs are central receptors of the innate immune system that drive host inflammation and adaptive immune responses in response to invading microbes. Among human TLRs, TLR10 is the only family member without a defined agonist or function. Phylogenetic analysis reveals that TLR10 is most related to TLR1 and TLR6, both of which mediate immune responses to a variety of microbial and fungal components in cooperation with TLR2. The generation and analysis of chimeric receptors containing the extracellular recognition domain of TLR10 and the intracellular signaling domain of TLR1, revealed that TLR10 senses triacylated lipopeptides and a wide variety of other microbial-derived agonists shared by TLR1, but not TLR6. TLR10 requires TLR2 for innate immune recognition, and these receptors colocalize in the phagosome and physically interact in an agonist-dependent fashion. Computational modeling and mutational analysis of TLR10 showed preservation of the essential TLR2 dimer interface and lipopeptide-binding channel found in TLR1. Coimmunoprecipitation experiments indicate that, similar to TLR2/1, TLR2/10 complexes recruit the proximal adaptor MyD88 to the activated receptor complex. However, TLR10, alone or in cooperation with TLR2, fails to activate typical TLR-induced signaling, including NF-kappaB-, IL-8-, or IFN-beta-driven reporters. We conclude that human TLR10 cooperates with TLR2 in the sensing of microbes and fungi but possesses a signaling function distinct from that of other TLR2 subfamily members.


Assuntos
Imunidade Inata , Modelos Imunológicos , Transdução de Sinais/imunologia , Receptor 10 Toll-Like/fisiologia , Receptor 1 Toll-Like/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Espaço Extracelular/química , Espaço Extracelular/genética , Espaço Extracelular/imunologia , Humanos , Imunidade Inata/genética , Lipopeptídeos/síntese química , Lipopeptídeos/metabolismo , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Multimerização Proteica/genética , Multimerização Proteica/imunologia , Estrutura Terciária de Proteína/genética , Pseudogenes/imunologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/genética , Receptor 1 Toll-Like/agonistas , Receptor 1 Toll-Like/química , Receptor 1 Toll-Like/deficiência , Receptor 10 Toll-Like/agonistas , Receptor 10 Toll-Like/química , Receptor 10 Toll-Like/deficiência , Receptor 2 Toll-Like/química , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA