Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11335, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760417

RESUMO

Crude oil hydrocarbons are considered major environmental pollutants and pose a significant threat to the environment and humans due to having severe carcinogenic and mutagenic effects. Bioremediation is one of the practical and promising technology that can be applied to treat the hydrocarbon-polluted environment. In this present study, rhamnolipid biosurfactant (BS) produced by Pseudomonas aeruginosa PP4 and green synthesized iron nanoparticles (G-FeNPs) from Lawsonia inermis was used to evaluate the biodegradation efficiency (BE) of crude oil. The surface analysis of G-FeNPs was carried out by using FESEM and HRTEM to confirm the size and shape. Further, the average size of the G-FeNPs was observed around 10 nm by HRTEM analysis. The XRD and Raman spectra strongly confirm the presence of iron nanoparticles with their respective peaks. The BE (%) of mixed degradation system-V (PP4+BS+G-FeNPs) was obtained about 82%. FTIR spectrum confirms the presence of major functional constituents (C=O, -CH3, C-O, and OH) in the residual oil content. Overall, this study illustrates that integrated nano-based bioremediation could be an efficient approach for hydrocarbon-polluted environments. This study is the first attempt to evaluate the G-FeNPs with rhamnolipid biosurfactant on the biodegradation of crude oil.


Assuntos
Biodegradação Ambiental , Hidrocarbonetos , Petróleo , Hidrocarbonetos/metabolismo , Hidrocarbonetos/química , Petróleo/metabolismo , Lawsonia (Planta)/química , Lawsonia (Planta)/metabolismo , Pseudomonas aeruginosa/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro/química , Tensoativos/metabolismo , Tensoativos/química , Glicolipídeos/química , Glicolipídeos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Ambientais/metabolismo
2.
Environ Res ; 244: 117911, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38104919

RESUMO

Poly aromatic hydrocarbons (PAHs) are considered as hazardous compounds which causes serious threat to the environment dua to their more carcinogenic and mutagenic impacts. In this study, Pseudomonas aeruginosa PP4 strain and synthesized iron nanoparticles were used to evaluate the biodegradation efficiency (BE %) of residual anthracene. The BE (%) of mixed degradation system (Anthracene + PP4+ FeNPs) was obtained about 67 %. The FTIR spectra result revealed the presence of functional groups (C-H, -CH3, CC, =C-H) in the residual anthracene. The FESEM and TEM techniques were used to determine the surface analysis of the synthesized FeNPs and the average size was observed by TEM around 5-50 nm. The crystalline nature of the synthesized iron nanoparticles was confirmed by the observed different respective peaks of XRD pattern. The various functional constituents (OH, C-H, amide I, CH3) were identified in the synthesized iron nanoparticles by FTIR spectrum. In conclusion, this integrated nano-bioremediation approach could be an promising and effective way for many environmental fields like cleanup of hydrocarbon rich environment.


Assuntos
Antracenos , Pseudomonas aeruginosa , Antracenos/metabolismo , Ferro , Biodegradação Ambiental , Nanopartículas Magnéticas de Óxido de Ferro
3.
Front Microbiol ; 14: 1225769, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601383

RESUMO

Introduction: Ointments are generally used as a therapeutic agent for topical medication or transdermal drug delivery, such as wound healing and skin lesions. Methods: In this study, Tridax procumbens plant extract (0.7 g/mL) was used to prepare herbal-infused oil as the oil phase and gelatin-stabilized silver nanoparticle (G-AgNPs) (0.3 g/mL) as the aqueous phase. To blend the oil and aqueous phases, rhamnolipid biosurfactant with a critical micelle concentration of 55 mg/L from strain Pseudomonas aeruginosa PP4 has been used for herb ointment preparation. The average size of the synthesized G-AgNPs was observed between 10-30 nm and confirmed as spherical-shaped particles by TEM analysis. Subsequently, GC-MS and FTIR characterization are used to confirm herb ointment's chemical and functional characteristics. Results: Based on the antibacterial studies, the highest microbial growth inhibition was observed for herb ointment, about 19.5 mm for the pathogen Staphylococcus aureus at the concentration of 100 µg/mL, whereas 15.5 mm was obtained for Escherichia coli, respectively. In addition, the minimum inhibitory concentration (MIC) assay showed negligible bacterial growth at 100 µg/mL for S. aureus and E. coli, respectively. Moreover, the cell viability assay for herb ointment exhibited low cytotoxic activity at higher concentrations (100 µg/mL) in Vero cell lines. In this study, wound scratch assay showed a significant cell migration rate (90 ± 2%) in 3 days of incubation than the control (62 ± 2%). Discussion: As a result, the biosurfactant-based nano-topical herb ointment revealed a low cytotoxic and higher cell migration capacity. Altogether, these findings highlighted the utility of this herb ointment in therapeutic applications such as wound healing.

4.
Chemosphere ; 310: 136826, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36243087

RESUMO

This study aimed to carry out the bioaugmentation of crude oil/motor oil contaminated soil. The mixture of novel strains Pseudomonas aeruginosa PP3 and Pseudomonas aeruginosa PP4 were used in this bioaugmentation studies. The four different bioaugmentation systems (BS 1-4) were carried out in this experiment labelled as BS 1 (Crude oil contaminated soil), BS 2 (BS 1 + bacterial consortia), BS 3 (Motor oil sludge contaminated soil), and BS 4 (BS 3 + bacterial consortia). The total petroleum hydrocarbon (TPH) was investigated for monitor the effectiveness of bioaugmentation process. The highest TPH removal rate was recorded on BS 4 (9091 mg Kg -1) was about 67% followed by 52% on BS 2 (8584 mg Kg -1) respectively. The percentage of biodegradation efficiency (BE) of residual crude and motor oil contaminated soil were evaluated by GCMS analysis and the results showed that 65% (BS 2) and 83% (BS 4) respectively. Further the bioaugmented soil was subjected to the plant cultivation (Lablab purpureus) and the results revealed that the L. purpureus was rapidly grown in the systems BS 4 and BS 2 than the system BS 1 and BS 2 which was due to the lesser biodegradation of the crude oil contents. In resultant, it can be concluded that the soil was suitable for the cultivation of plant. Overall, this study revealed that the selected bacterial consortia were effectively degraded the hydrocarbon and act as a potential bioremediator in the hydrocarbon polluted soil in a short period.


Assuntos
Petróleo , Poluentes do Solo , Petróleo/metabolismo , Solo/química , Pseudomonas/metabolismo , Poluentes do Solo/análise , Microbiologia do Solo , Hidrocarbonetos/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo
5.
Environ Pollut ; 304: 119223, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35351596

RESUMO

Crude oil contaminant is one of the major problem to environment and its removal process considered as most challenging tool currently across the world. In this degradation study, crude oil hydrocarbons are degraded on various pH optimization conditions (pH 2, 4,6,7,8 and 10) by using two biosurfactant producing bacterial strains Pseudomonas aeruginosa PP3 and Pseudomonas aeruginosa PP4. During crude oil biodegradation, degradative enzymes alkane hydroxylase and alcohol dehydrogenase were examined and found to be higher in PP4 than PP3. Biodegradation efficiency (BE) of crude oil by both PP3 and PP4 were analysed by gas chromatography mass spectroscopy (GCMS). Based on strain PP3, the highest BE was observed in pH 2 and pH 4 were found to be 62% and 69% than pH 6, 7, 8 and 10 (47%, 47%, 49% and 45%). It reveals that PP3 was survived effectively in acidic condition and utilized the crude oil hydrocarbons. In contrast, the highest BE of PP4 was observed in pH 7 (78%) than pH4 (68%) and pH's 2, 6, 8 and 10 (52%, 52%, 43% and 53%) respectively. FTIR spectra results revealed that the presence of different functional group of hydrocarbons (OH, -CH3, CO, C-H) in crude oil. GCMS results confirmed that both strains PP3 and PP4 were survived in acidic condition and utilized the crude oil hydrocarbons as sole carbon sources. This is the first observation on biodegradation of crude oil by the novel strains of Pseudomonas aeruginosa in acidic condition with higher BE. Overall, the extracellular enzymes and surface active compounds (biosurfactant) produced by bacterial strains were played a key role in crude oil biodegradation process.


Assuntos
Petróleo , Bactérias/metabolismo , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Pseudomonas aeruginosa/metabolismo , Tensoativos/metabolismo
6.
Chemosphere ; 289: 133168, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34890617

RESUMO

In this study, two biosurfactant producing Pseudomonas aeruginosa sp. were isolated from motor oil contaminated soil for crude oil, alkane and PAH degradation studies. Metagenomics analysis identified as proteobacteria phyla was the dominant. Isolated two bacterial species were well grown in mineral salt medium with 1% of crude oil, alkanes (dotriacontane and tetratetracontane) and PAH (pyrene, benzopyrene and anthracene) as sole carbon sources. Total biodegradation efficiency (BE) of strains PP3 and PP4 in Crude oil degradation evaluated by the analysis of gas chromatography and mass spectrometry was 50% and 86% respectively. BE of PP3, PP4 and mixed consortium in alkane biodegradation were 46%, 47% and 36%, respectively. BE of PP3, PP4 and mixed consortium in PAH biodegradation were 22%, 48% and 35%, respectively. Based on the results revealed that strain pp4 was more efficient bacteria to degrade the crude oil, alkane and PAH than pp3. This was due to the higher production of biosurfactant by PP4 than PP3 and also confirmed in the test of emulsification index (E24). FTIR results showed that the produced biosurfactant could partially solubilize the crude oil hydrocarbons, alkanes and PAH and confirmed as glycolipid (rhamnolipid) in nature. Thus, the obtained results from the GCMS showed that all hydrocarbons were utilized by bacteria as carbon source for biosurfactant production and utilize the high molecular weight hydrocarbons. Based on the present study we can suggest that identified potential biosurfactant producing bacteria are used for biodegradation of high molecular weight hydrocarbon (>C40).


Assuntos
Hidrocarbonetos , Petróleo , Bactérias/genética , Biodegradação Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Peso Molecular , Petróleo/análise , Solo , Tensoativos
7.
Environ Res ; 207: 112158, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34606840

RESUMO

The biological denitrification in the presence of gC3N4 doped TiO2 composite was investigated through series of batch experiment. gC3N4 doped TiO2 was synthesized and characterized by FT-IR, XRD, SEM-EDAX and the prepared composite used as electron donor for the enhancement biological denitrification. The role of extracellular polymeric substances in the biological nitrate reduction and electron transfer process has been elucidated. The XRD result confirms that TiO2 nanoparticle has 80% anatase and 20% rutile phase. The gC3N4 shows the diffraction peaks at 27.57°, corresponds to the diffraction planes of (002) the hexagonal graphitic carbon nitride. The SEM image of modified gC3N4/TiO2 nanocomposites showed agglomerated small spherical TiO2 nanoparticles attached on the surface of gC3N4. The highest level of nitrate removal was 90% (from 100 mg/L to 10 mg/L nitrate) in gC3N4/TiO2 nanocomposite in the 15% wt TiO2 doped gC3N4. The nitrate reduction in the biofilm with gC3N4 doped TiO2 composite have significantly enhanced the nitrate reduction than the control. Photoexcited electrons were generated from gC3N4 doped TiO2 photocatalyst act as excellent electron donor to the microbial communities. Extracellular polymeric substances acted as a passing media for microbial extracellular electron transfer and protective barrier for microbes. The electroactive microbes were harvested electrons from the gC3N4 doped TiO2 composite under irradiation and enhancing the biological nitrate reduction. Overall, the present study suggests that insight into the mechanism of photoexcited electron facilitated biological nitrate reduction and role of extracellular polymeric substances. The successful integration of gC3N4 doped TiO2 photocatalyst and biofilm is a promising technology for nitrate removal.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Nitratos , Catálise , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio
8.
Environ Pollut ; 289: 117956, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426181

RESUMO

Hydrocarbons and their derivative compounds are recalcitrant in nature and causing adverse impacts to the environment and are classified as important pollutants. Removal of these pollutants from the atmosphere is a challenging process. Hydrophobic organic pollutants (HOPs) including crude oil, diesel, dotriacontane (C32), and tetracontane (C40) are subjected to the biodegradation study by using a bacterial consortium consist of Bacillus subtilis, Pseudomonas stutzeri, and Acinetobacter baumannii. The impact of pH and temperature on the biodegradation process was monitored. During the HOPs biodegradation, the impact of hydrocarbon-degrading extracellular enzymes such as alcohol dehydrogenase, alkane hydroxylase, and lipase was examined, and found average activity about 47.2, 44.3, and 51.8 µmol/mg-1, respectively. Additionally, other enzymes such as catechol 1,2 dioxygenase and catechol 2,3 dioxygenase were found as 118 and 112 µmol/mg-1 Enzyme as an average range in all the HOPs degradation, respectively. Also, the impact of the extracellular polymeric substance and proteins were elucidated during the biodegradation of HOPs with the average range of 116.90, 54.98 mg/L-1 respectively. The impact of biosurfactants on the degradation of different types of HOPs is elucidated. Very slight changes in the pH were also noticed during the biodegradation study. Biodegradation efficiency was calculated as 90, 84, 76, and 72% for crude oil, diesel, C32, and C40, respectively. Changes in the major functional groups (CH, C-O-C, CO, =CH2, CH2, CH3) were confirmed by FTIR analysis and intermediated metabolites were identified by GCMS analysis. The surface-active molecules along with the enzymes played a crucial role in the biodegradation process.


Assuntos
Poluentes Ambientais , Petróleo , Biodegradação Ambiental , Matriz Extracelular de Substâncias Poliméricas , Hidrocarbonetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA