Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 38(6): e23741, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816991

RESUMO

Alzheimer's disease (AD) is a progressive decline in cognitive ability and behavior which eventually disrupts daily activities. AD has no cure and the progression rate varies unlikely. Among various causative factors, heavy metals are reported to be a significant hazard in AD pathogenesis. Metal-induced neurodegeneration has been focused globally with thorough research to unravel the mechanistic insights in AD. Recently, heavy metals suggested to play an important role in epigenetic alterations which might provide evidential results on AD pathology. Epigenetic modifications are known to play towards novel therapeutic approaches in treating AD. Though many studies focus on epigenetics and heavy metal implications in AD, there is a lack of research on heavy metal influence on epigenetic toxicity in neurological disorders. The current review aims to elucidate the plausible role of cadmium (Cd), iron (Fe), arsenic (As), copper (Cu), and lithium (Li) metals on epigenetic factors and the increase in amyloid beta and tau phosphorylation in AD. Also, the review discusses the common methods of heavy metal detection to implicate in AD pathogenesis. Hence, from this review, we can extend the need for future research on identifying the mechanistic behavior of heavy metals on epigenetic toxicity and to develop diagnostic and therapeutic markers in AD.


Assuntos
Doença de Alzheimer , Epigênese Genética , Metais Pesados , Doença de Alzheimer/genética , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Doença de Alzheimer/etiologia , Humanos , Epigênese Genética/efeitos dos fármacos , Metais Pesados/toxicidade , Peptídeos beta-Amiloides/metabolismo , Animais , Proteínas tau/metabolismo , Proteínas tau/genética
2.
Mol Neurobiol ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040995

RESUMO

The influence of various risk factors such as aging, intricate cellular molecular processes, and lifestyle factors like smoking, alcohol consumption, caffeine intake, and occupational factors has received increased focus in relation to the risk and development of Parkinson's disease (PD). Limited research has been conducted on the assessment of lifestyle impact on kynurenine 3-monooxygenase (KMO) gene in PD. A total of 164 subjects, including 82 PD cases and 82 healthy individuals, were recruited based on specific inclusion and exclusion criteria. The severity of PD and clinical assessment were evaluated using the Unified Parkinson's Disease Rating Scale (UPDRS) and Hoehn and Yahr (HY) scaling. Sanger sequencing was performed to analyse the KMO gene in the recruited subjects, and case-control studies were conducted. The UPDRS assessment revealed significant impairments in smell, tremors, walking, and posture instability in the late-onset PD cohorts. The HY scaling indicated a higher proportion of late-onset cohorts in stage 2. Moreover, both alcoholic and non-alcoholic groups showed significantly increased levels of 3-HK in late-onset PD. Gene analysis identified missense variants at position g.241593373 T > A (rs752312199) and intronic variants at positions g.241592623A > G (rs640718), g.241592800C > A (rs990388262), g.241592802A > C (rs1350160268), g.241592808 T > C (rs1478255936), and g.241592812G > T (rs948928931). The alterations in the KMO gene were found to influence the levels of kynurenic acid (KYNA) and 3-hydroxykynurenine (3-HK). Genomic analysis revealed a high prevalence of missense mutations in the late-onset PD groups, leading to a decline in 3-HK levels in patients. This leads to the reduction of the progression of disease in late-onset groups which shows that this mutation may lead to the protective effect on the PD subjects. This study suggests the use of KYNA and 3-HK as potential biomarkers in analysing the progression of disease. This study is limited by its small sample size. To overcome this limitation, a larger study involving in greater number of participants is needed to thoroughly investigate the KMO gene and KP metabolites, to enhance our understanding of Parkinson's disease progression, and to enhance diagnostic capabilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA