Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-16, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993988

RESUMO

Globally, dental caries is a prevalent oral disease caused by cariogenic bacteria, primarily Streptococcus mutans. It establishes caries either through sucrose-dependent (via glycosyltransferases) or through sucrose-independent (via surface adhesins Antigen I/II) mechanism. Sortase A (srtA) attaches virulence-associated adhesins to host tissues. Because of their importance in the formation of caries, targeting these proteins is decisive in the development of new anticariogenic drugs. High-throughput virtual screening with LIPID MAPS -a fatty acid database was performed. The selected protein-ligand complexes were subjected to molecular dynamics simulation (MDs). The Binding Free Energy of complexes was predicted using MM/PBSA. Further, the drug-likeness and pharmacokinetic properties of ligands were also analyzed. Out of 46,200 FAs scrutinized virtually against the three protein targets (viz., GtfC, Ag I/II and srtA), top 5 FAs for each protein were identified as the best hit based on interaction energies viz., hydrogen bond numbers and hydrophobic interaction. Further, two common FAs (LMFA01050418 and LMFA01040045) that showed high binding affinity against Ag I/II and srtA were selected for MDs analysis. A 100ns MDs unveiled a stable conformation. Results of Rg signified that FAs does not induce significant structural & conformational changes. SASA indicated that the complexes maintain higher thermodynamic stability during MDs. The predicted binding free energy (MM/PBSA) of complexes elucidated their stable binding interaction. ADME analysis suggested the FAs are biologically feasible as therapeutic candidates. Overall, the presented in silico data is the first of its kind in delineating FAs as promising anticaries agents of future.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; 41(23): 13950-13962, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37098715

RESUMO

Breast cancer (BC) is the most serious and second leading cause of death in women worldwide. When breast cancer is diagnosed and treated early, the chance of long-term survival is up to 90%. On the other hand, 90% of BC patient deaths are due to metastasis and a lack of effective early diagnosis. The existing conventional chemotherapy provides negative feedback due to transportation barriers towards the action sites, multidrug resistance, poor bio-availability, non-specific delivery and systemic side effects on the healthy tissue. Syk protein Kinase has been reported in BC, as a tumor modulator, providing a pro-survival signal and also by restricting epithelial-mesenchymal transition, enhancing cell-cell interactions and inhibiting migration. In the present study, we explored the possibility of targeting BC by attenuating Syk protein Kinase. Hence, we have conjugated the hydrophobic Bendamustine (BEN) and hydrophilic Azacitidine (AZA) anticancer drugs to evaluate their efficacy against BC. The native drugs (BEN and AZA) and designed drug-drug conjugate (BEN-AZA) were docked with Syk protein. Then, the docked complex was performed for Binding Free Energy and Molecular Dynamics Simulations. Furthermore, DFT and ADME properties were carried out. The results revealed that the designed drug-drug conjugate has a better docking score, ΔGbind and admirable stability throughout the simulation when compared with native drugs. In DFT and ADME analyses, the designed drug-drug conjugate has shown good stereo electronic features and pharmaceutical relevant parameters than that of native drugs. The overall results suggested that the designed drug-drug conjugate may be a suitable candidate for BC treatment.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Neoplasias da Mama , Feminino , Humanos , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Neoplasias da Mama/patologia , Cloridrato de Bendamustina/uso terapêutico , Antineoplásicos/uso terapêutico , Quinase Syk , Simulação de Acoplamento Molecular
3.
J Biomol Struct Dyn ; 40(4): 1629-1638, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33034258

RESUMO

Prostate cancer (PC) is one of the major impediments affecting men, which leads approximately 31,620 deaths in both developing and developed countries. Although some chemotherapy drugs have been reported for prostate cancer, they are not effective due to the lack of safety, efficacy and low selectivity. Hence, the novel alternative anticancer agents with remarkable effect are highly appreciable. Natural plants contain several bio-active compounds which have been traditionally used for the various medical treatments. Particularly, naringin is a natural bio-active compound commonly found in the citrus fruits, which have shown numerous biological activities. Phosphatase and tensin homolog (PTEN) is a tumor suppressor gene, which activates both lipid phosphates and protein phosphates. The PTEN gene is negative regulator of PI3K/AKT/mTOR pathways, since, this signaling pathway play an essential role in the cell survival, proliferation and migration. In the present in silico investigation, structure based virtual screening, molecular docking, molecular dynamics simulation and Adsorption, Distribution, Metabolism, Excretion (ADME) prediction were employed to determine the binding affinity, stability and drug likeness properties of top ranked screened compounds and naringin, respectively. The results revealed that the complex has good molecular interactions, binding stability (peak between 0.3 and 0.4 nm) and no violations in the Lipinski Rule of 5 in naringin, but the screened compounds violated the drug likeness properties. From the in silico analyses, it is identified that naringin compound might assist in the development of novel therapeutic candidate against prostate cancer. Communicated by Ramaswamy H. Sarma.


Assuntos
Ativadores de Enzimas/farmacologia , Flavanonas/farmacologia , PTEN Fosfo-Hidrolase , Neoplasias da Próstata , Humanos , Masculino , Simulação de Acoplamento Molecular , Neoplasias da Próstata/tratamento farmacológico
4.
Front Mol Biosci ; 8: 637329, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277698

RESUMO

SARS-CoV-2, an etiological agent of COVID-19, has been the reason for the unexpected global pandemic, causing severe mortality and imposing devastative effects on public health. Despite extensive research work put forward by scientist around globe, so far, no suitable drug or vaccine (safe, affordable, and efficacious) has been identified to treat SARS-CoV-2. As an alternative way of improvising the COVID-19 treatment strategy, that is, strengthening of host immune system, a great deal of attention has been given to phytocompounds from medicinal herbs worldwide. In a similar fashion, the present study deliberately focuses on the phytochemicals of three Indian herbal medicinal plants viz., Mentha arvensis, Coriandrum sativum, and Ocimum sanctum for their efficacy to target well-recognized viral receptor protein through molecular docking and dynamic analyses. Nucleocapsid phosphoprotein (N) of SARS-CoV-2, being a pivotal player in replication, transcription, and viral genome assembly, has been recognized as one of the most attractive viral receptor protein targets for controlling the viral multiplication in the host. Out of 127 phytochemicals screened, nine (linarin, eudesmol, cadinene, geranyl acetate, alpha-thujene, germacrene A, kaempferol-3-O-glucuronide, kaempferide, and baicalin) were found to be phenomenal in terms of exhibiting high binding affinity toward the catalytic pocket of target N-protein. Further, the ADMET prediction analysis unveiled the non-tumorigenic, noncarcinogenic, nontoxic, non-mutagenic, and nonreproductive nature of the identified bioactive molecules. Furthermore, the data of molecular dynamic simulation validated the conformational and dynamic stability of the docked complexes. Concomitantly, the data of the present study validated the anti-COVID efficacy of the bioactives from selected medicinal plants of Indian origin.

5.
Food Chem Toxicol ; 148: 111966, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33412235

RESUMO

BACKGROUND: COVID-19, the presently prevailing global public health emergency has culminated in international instability in economy. This unprecedented pandemic outbreak pressingly necessitated the trans-disciplinary approach in developing novel/new anti-COVID-19 drugs especially, small molecule inhibitors targeting the seminal proteins of viral etiological agent, SARS-CoV-2. METHODS: Based on the traditional medicinal knowledge, we made an attempt through molecular docking analysis to explore the phytochemical constituents of three most commonly used Indian herbs in 'steam inhalation therapy' against well recognized viral receptor proteins. RESULTS: A total of 57 phytochemicals were scrutinized virtually against four structural protein targets of SARS-CoV-2 viz. 3CLpro, ACE-2, spike glycoprotein and RdRp. Providentially, two bioactives from each of the three plants i.e. apigenin-o-7-glucuronide and ellagic acid from Eucalyptus globulus; eudesmol and viridiflorene from Vitex negundo and; vasicolinone and anisotine from Justicia adhatoda were identified to be the best hit lead molecules based on interaction energies, conventional hydrogen bonding numbers and other non-covalent interactions. On comparison with the known SARS-CoV-2 protease inhibitor -lopinavir and RdRp inhibitor -remdesivir, apigenin-o-7-glucuronide was found to be a phenomenal inhibitor of both protease and polymerase, as it strongly interacts with their active sites and exhibited remarkably high binding affinity. Furthermore, in silico drug-likeness and ADMET prediction analyses clearly evidenced the usability of the identified bioactives to develop as drug against COVID-19. CONCLUSION: Overall, the data of the present study exemplifies that the phytochemicals from selected traditional herbs having significance in steam inhalation therapy would be promising in combating COVID-19.


Assuntos
COVID-19/terapia , Compostos Fitoquímicos/administração & dosagem , Administração por Inalação , COVID-19/virologia , Simulação por Computador , Humanos , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/farmacologia , SARS-CoV-2/isolamento & purificação , Vapor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA