Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Pharm Bull (Tokyo) ; 65(12): 1167-1174, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29199221

RESUMO

Tetrahydrobiphenylene consists of cyclobutene fused with benzene and cyclohexene rings. In this paper, a direct method for synthesizing tetrahydrobiphenylenes based on a palladium (Pd)(0)-catalyzed C(sp2)-H functionalization was investigated. The developed method was applied to the synthesis of several tetrahydrobiphenylenes having an oxygen functionality at the ring juncture. The derivatization of a tetrahydrobiphenylene is also reported.


Assuntos
Derivados de Benzeno/química , Paládio/química , Derivados de Benzeno/síntese química , Carbono/química , Catálise , Hidrogênio/química , Teoria Quântica
2.
Chemistry ; 22(24): 8059-62, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27124498

RESUMO

A new method has been developed for the synthesis of tetrahydro-2H-fluorenes based on a Pd(0)-catalyzed benzylic C(sp(3) )-H functionalization. Importantly, the success of the cyclization step was dependent on there being substituents at the two positions ortho to the benzylic group to avoid an undesired C(sp(2) )-H functionalization. This method was subsequently used to prepare the right-hand fragment of the hexacyclic triterpenoid benzohopanes, and therefore represents a powerful tool for the construction of the related compounds.

3.
Chem Asian J ; 9(9): 2628-34, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25044314

RESUMO

Assoanine, pratosine, hippadine, and dehydroanhydrolycorine belong to the pyrrolophenanthridine family of alkaloids, which are isolated from plants of the Amaryllidaceae species. Structurally, these alkaloids are characterized by a tetracyclic skeleton that contains a biaryl moiety and an indole core, and compounds belonging to this class have received considerable interest from researchers in a number of fields because of their biological properties and the challenges associated with their synthesis. Herein, a strategy for the total synthesis of these alkaloids by using C-H activation chemistry is described. The tetracyclic skeleton was constructed in a stepwise manner by C(sp(3))-H functionalization followed by a Catellani reaction, including C(sp(2))-H functionalization. A one-pot reaction involving both C(sp(3))-H and C(sp(2))-H functionalization was also attempted. This newly developed strategy is suitable for the facile preparation of various analogues because it uses simple starting materials and does not require protecting groups.


Assuntos
Alcaloides/síntese química , Carbono/química , Hidrogênio/química , Fenantridinas/síntese química , Pirróis/síntese química , Alcaloides/química , Estrutura Molecular , Fenantridinas/química , Pirróis/química
4.
ChemMedChem ; 9(3): 657-64, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24403121

RESUMO

We recently discovered N-hydroxy-3-[1-(phenylthio)methyl-1H-1,2,3-triazol-4-yl]benzamide (NCC149) as a potent and selective histone deacetylase 8 (HDAC8) inhibitor from a 151-member triazole compound library using a click chemistry approach. In this work, we present a series of NCC149 derivatives bearing various aromatic linkers that were designed and synthesized as HDAC8-selective inhibitors. A series of in vitro assays were used to evaluate the newly synthesized compounds, four of which showed HDAC8 inhibitory activity similar to that of NCC149, and one of which displayed HDAC8 selectivity superior to that of NCC149. In addition, these top four compounds induced the increase of acetylated cohesin (an HDAC8 substrate) in HeLa cells in a dose-dependent manner, indicating inhibition of HDAC8 in the cells. While none of these compounds enhanced the acetylation of H3K9 (a substrate of HDAC1 and 2), only one compound refrained from increasing α-tubulin acetylation, a substrate of HDAC6, indicating that this compound is more selective for HDAC8 than the other derivatives. Furthermore, this HDAC8-selective inhibitor suppressed the growth of T-cell lymphoma cells more potently than did NCC149. These findings are useful for the further development of HDAC8-selective inhibitors.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Proteínas Repressoras/antagonistas & inibidores , Triazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/química , Estrutura Molecular , Proteínas Repressoras/metabolismo , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA