Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(5): e0155307, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27171180

RESUMO

Apolipoprotein E4 (ApoE4), one of three common isoforms of ApoE, is a major risk factor for late-onset Alzheimer disease (AD). ApoE-deficient mice, as well as mice expressing human ApoE4, display impaired learning and memory functions and signs of neurodegeneration. Moreover, ApoE protects against high-fat (HF) diet induced neurodegeneration by its role in the maintenance of the integrity of the blood-brain barrier. The influence of a HF diet on the progression of AD-like cognitive and neuropathological changes was assessed in wild-type (WT), human ApoE4 and ApoE-knockout (ApoE-/-) mice to evaluate the modulatory role of ApoE in this process. From 12 months of age, female WT, ApoE4, and ApoE-/- mice were fed either a standard or a HF diet (19% butter, 0.5% cholate, 1.25% cholesterol) throughout life. At 15 months of age mice performed the Morris water maze, evaluating spatial learning and memory. ApoE-/- showed increased spatial learning compared to WT mice (p = 0.009). HF diet improved spatial learning in WT mice (p = 0.045), but did not affect ApoE4 and ApoE-/- mice. Immunohistochemical analyses of the hippocampus demonstrated increased neuroinflammation (CD68) in the cornu ammonis 1 (CA1) region in ApoE4 (p = 0.001) and in ApoE-/- (p = 0.032) mice on standard diet. HF diet tended to increase CD68 in the CA1 in WT mice (p = 0.052), while it decreased in ApoE4 (p = 0.009), but ApoE-/- remained unaffected. A trend towards increased neurogenesis (DCX) was found in both ApoE4 (p = 0.052) and ApoE-/- mice (p = 0.068). In conclusion, these data suggest that HF intake induces different effects in WT mice compared to ApoE4 and ApoE-/- with respect to markers for cognition and neurodegeneration. We propose that HF intake inhibits the compensatory mechanisms of neuroinflammation and neurogenesis in aged female ApoE4 and ApoE-/- mice.


Assuntos
Apolipoproteína E4/deficiência , Encéfalo/patologia , Encéfalo/fisiopatologia , Cognição/fisiologia , Inflamação/patologia , Plasticidade Neuronal , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Apolipoproteína E4/metabolismo , Peso Corporal , Giro Denteado/metabolismo , Dieta Hiperlipídica , Proteína 4 Homóloga a Disks-Large , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Feminino , Técnicas de Introdução de Genes , Transportador de Glucose Tipo 1/metabolismo , Guanilato Quinases/metabolismo , Humanos , Imuno-Histoquímica , Aprendizagem em Labirinto , Proteínas de Membrana/metabolismo , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Tamanho do Órgão
2.
J Nutr Biochem ; 30: 177-88, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27012634

RESUMO

Worldwide, the incidence of obesity is increasing at an alarming rate, and the number of children with obesity is especially worrisome. These developments raise concerns about the physical, psychosocial and cognitive consequences of obesity. It was shown that early dietary intake of arachidonic acid (ARA) and docosahexaenoic acid (DHA) can reduce the detrimental effects of later obesogenic feeding on lipid metabolism and adipogenesis in an animal model of mild obesity. In the present study, the effects of early dietary ARA and DHA on cognition and brain structure were examined in mildly obesogenic ApoE*3Leiden mouse model. We used cognitive tests and neuroimaging during early and later life. During their early development after weaning (4-13weeks of age), mice were fed a chow diet or ARA and DHA diet for 8 weeks and then switched to a high-fat and high-carbohydrate (HFHC) diet for 12weeks (14-26weeks of age). An HFHC-diet led to increased energy storage in white adipose tissue, increased cholesterol levels, decreased triglycerides levels, increased cerebral blood flow and decreased functional connectivity between brain regions as well as cerebrovascular and gray matter integrity. ARA and DHA intake reduced the HFHC-diet-induced increase in body weight, attenuated plasma triglycerides levels and improved cerebrovasculature, gray matter integrity and functional connectivity in later life. In conclusion, an HFHC diet causes adverse structural brain and metabolic adaptations, most of which can be averted by dietary ARA and DHA intake early in life supporting metabolic flexibility and cerebral integrity later in life.


Assuntos
Encéfalo/metabolismo , Dieta , Ácidos Graxos Insaturados/metabolismo , Obesidade/metabolismo , Animais , Camundongos
3.
Neurochem Int ; 89: 157-69, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25959627

RESUMO

Evidence suggests that flavanol consumption can beneficially affect cognition in adults, but little is known about the effect of flavanol intake early in life. The present study aims to assess the effect of dietary flavanol intake during the gestational and postnatal period on brain structure, cerebral blood flow (CBF), cognition, and brain metabolism in C57BL/6J mice. Female wild-type C57BL/6J mice were randomly assigned to either a flavanol supplemented diet or a control diet at gestational day 0. Male offspring remained on the corresponding diets throughout life and performed cognitive and behavioral tests during puberty and adulthood assessing locomotion and exploration (Phenotyper and open field), sensorimotor integration (Rotarod and prepulse inhibition), and spatial learning and memory (Morris water maze, MWM). Magnetic resonance spectroscopy and imaging at 11.7T measured brain metabolism, CBF, and white and gray matter integrity in adult mice. Biochemical and immunohistochemical analyses evaluated inflammation, synaptic plasticity, neurogenesis, and vascular density. Cognitive and behavioral tests demonstrated increased locomotion in Phenotypers during puberty after flavanol supplementation (p = 0.041) but not in adulthood. Rotarod and prepulse inhibition demonstrated no differences in sensorimotor integration. Flavanols altered spatial learning in the MWM in adulthood (p = 0.039), while spatial memory remained unaffected. Additionally, flavanols increased diffusion coherence in the visual cortex (p = 0.014) and possibly the corpus callosum (p = 0.066) in adulthood. Mean diffusion remained unaffected, a finding that corresponds with our immunohistochemical data showing no effect on neurogenesis, synaptic plasticity, and vascular density. However, flavanols decreased CBF in the cortex (p = 0.001) and thalamus (p = 0.009) in adulthood. Brain metabolite levels and neuroinflammation remained unaffected by flavanols. These data suggest that dietary flavanols results in subtle alterations in brain structure, locomotor activity and spatial learning. Comparison of these data to published findings in aging or neurodegeneration suggests that benefits of dietary flavanols may increase with advancing age and in disease.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Cognição/efeitos dos fármacos , Suplementos Nutricionais , Flavonoides/administração & dosagem , Animais , Encéfalo/metabolismo , Circulação Cerebrovascular/fisiologia , Cognição/fisiologia , Feminino , Flavonoides/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Fenômenos Fisiológicos da Nutrição Pré-Natal/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Pré-Natal/fisiologia
4.
J Nutr Biochem ; 26(1): 24-35, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25444517

RESUMO

Maternal intake of omega-3 polyunsaturated fatty acids (n-3 PUFA) is critical during perinatal development of the brain. Docosahexaenoic acid (DHA) is the most abundant n-3 PUFA in the brain and influences neuronal membrane function and neuroprotection. The present study aims to assess the effect of dietary n-3 PUFA availability during the gestational and postnatal period on cognition, brain metabolism and neurohistology in C57BL/6J mice. Female wild-type C57BL/6J mice at day 0 of gestation were randomly assigned to either an n-3 PUFA deficient diet (0.05% of total fatty acids) or an n-3 PUFA adequate diet (3.83% of total fatty acids) containing preformed DHA and its precursor α-linolenic acid. Male offspring remained on diet and performed cognitive tests during puberty and adulthood. In adulthood, animals underwent (31)P magnetic resonance spectroscopy to assess brain energy metabolites. Thereafter, biochemical and immunohistochemical analyses were performed assessing inflammation, neurogenesis and synaptic plasticity. Compared to the n-3 PUFA deficient group, pubertal n-3 PUFA adequate fed mice demonstrated increased motor coordination. Adult n-3 PUFA adequate fed mice exhibited increased exploratory behavior, sensorimotor integration and spatial memory, while neurogenesis in the hippocampus was decreased. Selected brain regions of n-3 PUFA adequate fed mice contained significantly lower levels of arachidonic acid and higher levels of DHA and dihomo-γ-linolenic acid. Our data suggest that dietary n-3 PUFA can modify neural maturation and enhance brain functioning in healthy C57BL/6J mice. This indicates that availability of n-3 PUFA in infant diet during early development may have a significant impact on brain development.


Assuntos
Cognição/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Hipocampo/efeitos dos fármacos , Destreza Motora/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Ácido 8,11,14-Eicosatrienoico/farmacologia , Animais , Ácido Araquidônico/farmacologia , Proteína 4 Homóloga a Disks-Large , Ácidos Docosa-Hexaenoicos/farmacologia , Feminino , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Hipocampo/metabolismo , Imuno-Histoquímica , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Sinaptofisina/genética , Sinaptofisina/metabolismo , Ácido alfa-Linolênico/farmacologia
5.
J Neurosci ; 34(42): 13963-75, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25319693

RESUMO

It is well established that the cholesterol-transporter apolipoprotein ε (APOE) genotype is associated with the risk of developing neurodegenerative diseases. Recently, brain functional connectivity (FC) in apoE-ε4 carriers has been investigated by means of resting-state fMRI, showing a marked differentiation in several functional networks at different ages compared with carriers of other apoE isoforms. The causes of such hampered FC are not understood. We hypothesize that vascular function and synaptic repair processes, which are both impaired in carriers of ε4, are the major contributors to the loss of FC during aging. To test this hypothesis, we integrated several different MRI techniques with immunohistochemistry and investigated FC changes in relation with perfusion, diffusion, and synaptic density in apoE4 and apoE-knock-out (KO) mice at 12 (adult) and 18 months of age. Compared with wild-type mice, we detected FC deficits in both adult and old apoE4 and apoE-KO mice. In apoE4 mice, these changes occurred concomitant with increased mean diffusivity in the hippocampus, whereas perfusion deficits appear only later in life, together with reduced postsynaptic density levels. Instead, in apoE-KO mice FC deficits were mirrored by strongly reduced brain perfusion since adulthood. In conclusion, we provide new evidence for a relation between apoE and brain connectivity, possibly mediated by vascular risk factors and by the efficiency of APOE as synaptic modulator in the brain. Our results show that multimodal MR neuroimaging is an excellent tool to assess brain function and to investigate early neuropathology and aging effects in translational research.


Assuntos
Envelhecimento/metabolismo , Apolipoproteína E4/deficiência , Encéfalo/metabolismo , Rede Nervosa/metabolismo , Descanso/fisiologia , Envelhecimento/patologia , Animais , Apolipoproteínas E/deficiência , Encéfalo/patologia , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Rede Nervosa/patologia
6.
PLoS One ; 8(9): e75393, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086523

RESUMO

Recent studies have focused on the use of multi-nutrient dietary interventions in search of alternatives for the treatment and prevention of Alzheimer's disease (AD). In this study we investigated to which extent long-term consumption of two specific multi-nutrient diets can modulate AD-related etiopathogenic mechanisms and behavior in 11-12-month-old AßPPswe-PS1dE9 mice. Starting from 2 months of age, male AßPP-PS1 mice and wild-type littermates were fed either a control diet, the DHA+EPA+UMP (DEU) diet enriched with uridine monophosphate (UMP) and the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), or the Fortasyn® Connect (FC) diet enriched with the DEU diet plus phospholipids, choline, folic acid, vitamins and antioxidants. We performed behavioral testing, proton magnetic resonance spectroscopy, immunohistochemistry, biochemical analyses and quantitative real-time PCR to gain a better understanding of the potential mechanisms by which these multi-nutrient diets exert protective properties against AD. Our results show that both diets were equally effective in changing brain fatty acid and cholesterol profiles. However, the diets differentially affected AD-related pathologies and behavioral measures, suggesting that the effectiveness of specific nutrients may depend on the dietary context in which they are provided. The FC diet was more effective than the DEU diet in counteracting neurodegenerative aspects of AD and enhancing processes involved in neuronal maintenance and repair. Both diets elevated interleukin-1ß mRNA levels in AßPP-PS1 and wild-type mice. The FC diet additionally restored neurogenesis in AßPP-PS1 mice, decreased hippocampal levels of unbound choline-containing compounds in wild-type and AßPP-PS1 animals, suggesting diminished membrane turnover, and decreased anxiety-related behavior in the open field behavior. In conclusion, the current data indicate that specific multi-nutrient diets can influence AD-related etiopathogenic processes. Intervention with the FC diet might be of interest for several other neurodegenerative and neurological disorders.


Assuntos
Doença de Alzheimer/dietoterapia , Doença de Alzheimer/prevenção & controle , Encéfalo/metabolismo , Cognição/fisiologia , Alimentos Fortificados/análise , Análise de Variância , Animais , Encéfalo/efeitos dos fármacos , Colesterol/sangue , Cognição/efeitos dos fármacos , Primers do DNA/genética , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Ácidos Graxos/metabolismo , Imuno-Histoquímica , Interleucina-1beta/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Mutantes , Reação em Cadeia da Polimerase em Tempo Real , Uridina Monofosfato
7.
PLoS One ; 8(5): e63643, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717459

RESUMO

Proton magnetic resonance spectroscopy ((1)H MRS) is a valuable tool in Alzheimer's disease research, investigating the functional integrity of the brain. The present longitudinal study set out to characterize the neurochemical profile of the hippocampus, measured by single voxel (1)H MRS at 7 Tesla, in the brains of AßPPSswe-PS1dE9 and wild-type mice at 8 and 12 months of age. Furthermore, we wanted to determine whether alterations in hippocampal metabolite levels coincided with behavioral changes, cognitive decline and neuropathological features, to gain a better understanding of the underlying neurodegenerative processes. Moreover, correlation analyses were performed in the 12-month-old AßPP-PS1 animals with the hippocampal amyloid-ß deposition, TBS-T soluble Aß levels and high-molecular weight Aß aggregate levels to gain a better understanding of the possible involvement of Aß in neurochemical and behavioral changes, cognitive decline and neuropathological features in AßPP-PS1 transgenic mice. Our results show that at 8 months of age AßPPswe-PS1dE9 mice display behavioral and cognitive changes compared to age-matched wild-type mice, as determined in the open field and the (reverse) Morris water maze. However, there were no variations in hippocampal metabolite levels at this age. AßPP-PS1 mice at 12 months of age display more severe behavioral and cognitive impairment, which coincided with alterations in hippocampal metabolite levels that suggest reduced neuronal integrity. Furthermore, correlation analyses suggest a possible role of Aß in inflammatory processes, synaptic dysfunction and impaired neurogenesis.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Cognição/fisiologia , Hipocampo/patologia , Neurônios/patologia , Sinapses/patologia , Envelhecimento , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/patologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Estudos Longitudinais , Espectroscopia de Ressonância Magnética/métodos , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Sinapses/metabolismo
8.
J Alzheimers Dis ; 31(4): 813-26, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22717611

RESUMO

Research into the development of Alzheimer's disease (AD) provides increasing evidence that vascular risk factors, including high serum cholesterol, might influence the progression of cognitive impairment and neural degeneration. In this study, we investigated the effects of high dietary cholesterol intake and the cholesterol-lowering liver X receptor-agonist T0901317 on capillary density, amyloid-ß deposition, and presynaptic boutons in the hippocampus of adult (8 months) and aged (15 months) AßPPswe-PS1dE9 and wild-type mice to elucidate how cholesterol may affect neurodegenerative processes in aging and AD. Our results show increased number of presynaptic boutons in 15-month-old AßPP-PS1 mice compared to age-matched wild-type animals, but no difference at 8 months of age. High cholesterol intake accelerated this response by increasing the amount of presynaptic boutons at 8 and 15 months of age, while T0901317 intake decreased the amount of presynaptic boutons in 15-month-old AßPP-PS1 mice. These findings suggest a synaptic compensatory response to maintain connectivity during aging. We hypothesize that high cholesterol intake may cause impaired cerebral blood flow inducing ischemia, fortifying the above mentioned hypothesis of a compensatory mechanism. Contrarily, cholesterol-lowering agents may positively influence cerebral circulation, thereby diminishing aggravation of AD-like pathology.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Colesterol na Dieta/administração & dosagem , Sinapses/metabolismo , Envelhecimento/efeitos dos fármacos , Doença de Alzheimer/patologia , Doença de Alzheimer/prevenção & controle , Animais , Anticolesterolemiantes/farmacologia , Anticolesterolemiantes/uso terapêutico , Encéfalo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sinapses/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA