Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 3(1): 43-58, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33432202

RESUMO

The mammalian liver is a central hub for systemic metabolic homeostasis. Liver tissue is spatially structured, with hepatocytes operating in repeating lobules, and sub-lobule zones performing distinct functions. The liver is also subject to extensive temporal regulation, orchestrated by the interplay of the circadian clock, systemic signals and feeding rhythms. However, liver zonation has previously been analysed as a static phenomenon, and liver chronobiology has been analysed at tissue-level resolution. Here, we use single-cell RNA-seq to investigate the interplay between gene regulation in space and time. Using mixed-effect models of messenger RNA expression and smFISH validations, we find that many genes in the liver are both zonated and rhythmic, and most of them show multiplicative space-time effects. Such dually regulated genes cover not only key hepatic functions such as lipid, carbohydrate and amino acid metabolism, but also previously unassociated processes involving protein chaperones. Our data also suggest that rhythmic and localized expression of Wnt targets could be explained by rhythmically expressed Wnt ligands from non-parenchymal cells near the central vein. Core circadian clock genes are expressed in a non-zonated manner, indicating that the liver clock is robust to zonation. Together, our scRNA-seq analysis reveals how liver function is compartmentalized spatio-temporally at the sub-lobular scale.


Assuntos
Relógios Circadianos/genética , Expressão Gênica/fisiologia , Fígado/metabolismo , Periodicidade , Algoritmos , Aminoácidos/metabolismo , Animais , Metabolismo dos Carboidratos/genética , Perfilação da Expressão Gênica , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/metabolismo , Proteínas Circadianas Period/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Via de Sinalização Wnt/genética
2.
Proc Natl Acad Sci U S A ; 117(1): 779-786, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31848250

RESUMO

The occurrence and sequelae of disorders that lead to hypoxic spells such as asthma, chronic obstructive pulmonary disease, and obstructive sleep apnea (OSA) exhibit daily variance. This prompted us to examine the interaction between the hypoxic response and the circadian clock in vivo. We found that the global transcriptional response to acute hypoxia is tissue-specific and time-of-day-dependent. In particular, clock components differentially responded at the transcriptional and posttranscriptional level, and these responses depended on an intact circadian clock. Importantly, exposure to hypoxia phase-shifted clocks in a tissue-dependent manner led to intertissue circadian clock misalignment. This differential response relied on the intrinsic properties of each tissue and could be recapitulated ex vivo. Notably, circadian misalignment was also elicited by intermittent hypoxia, a widely used model for OSA. Given that phase coherence between circadian clocks is considered favorable, we propose that hypoxia leads to circadian misalignment, contributing to the pathophysiology of OSA and potentially other diseases that involve hypoxia.


Assuntos
Relógios Circadianos/fisiologia , Hipóxia/fisiopatologia , Fotoperíodo , Apneia Obstrutiva do Sono/fisiopatologia , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Humanos , Hipóxia/etiologia , Rim/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Oxigênio/metabolismo , RNA-Seq , Apneia Obstrutiva do Sono/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA