Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Sci Rep ; 13(1): 18619, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903814

RESUMO

Animal movements are a major driver for the spread of Transboundary Animal Diseases (TADs). These movements link populations that would otherwise be isolated and hence create opportunities for susceptible and infected individuals to meet. We used social network analysis to describe the seasonal network structure of cattle movements in Uganda and unravel critical network features that identify districts or sub-regions for targeted risk-based surveillance and intervention. We constructed weighted, directed networks based on 2019 between-district cattle movements using official livestock mobility data; the purpose of the movement ('slaughter' vs. 'live trade') was used to subset the network and capture the risks more reliably. Our results show that cattle trade can result in local and long-distance disease spread in Uganda. Seasonal variability appears to impact the structure of the network, with high heterogeneity of node and edge activity identified throughout the seasons. These observations mean that the structure of the live trade network can be exploited to target influential district hubs within the cattle corridor and peripheral areas in the south and west, which would result in rapid network fragmentation, reducing the contact structure-related trade risks. Similar exploitable features were observed for the slaughter network, where cattle traffic serves mainly slaughter hubs close to urban centres along the cattle corridor. Critically, analyses that target the complex livestock supply value chain offer a unique framework for understanding and quantifying risks for TADs such as Foot-and-Mouth disease in a land-locked country like Uganda. These findings can be used to inform the development of risk-based surveillance strategies and decision making on resource allocation. For instance, vaccine deployment, biosecurity enforcement and capacity building for stakeholders at the local community and across animal health services with the potential to limit the socio-economic impact of outbreaks, or indeed reduce their frequency.


Assuntos
Doenças dos Animais , Doenças dos Bovinos , Humanos , Bovinos , Animais , Estações do Ano , Uganda/epidemiologia , Doenças dos Animais/epidemiologia , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Gado , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/prevenção & controle
2.
Front Digit Health ; 5: 1199635, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538199

RESUMO

Digital contact tracing presents numerous advantages compared to manual contact tracing methods, especially in terms of enhanced speed and automation. Nevertheless, a lack of comprehensive evaluation regarding functionality, efficiency, benefits, and acceptance within communities remains. Here we primarily focus on the functionality of THEA-GS, an open-source digital contact tracing tool developed through consultation with stakeholders. Additionally, we provide insights from its implementation on a limited sample of haulage drivers in Uganda, serving as a representative case for a low- and middle-income country. THEA-GS comprises two primary components: (a) a smartphone application, and (b) a suite of server-programs responsible for data processing and analysis, including databases and a web-based interface featuring dashboards. In essence, the mobile application records the timestamped location of haulage drivers within the road network and identifies possible transmission hotspots by analyzing factors such as the duration of stops and the communities associated with them. The tool can be integrated with national infrastructure to compare drivers' diagnostic results and contact structure, thereby generating individual and community risk assessments relative to the road network. During the Omicron-variant wave of the COVID-19 pandemic, a total of 3,270 haulage drivers were enrolled between October 2021 and October 2022. Around 75% of these drivers utilized THEA-GS for approximately two months. Based on an analysis of 3,800 test results, which included 48 positive cases, 125 contacts, and 40 million time-stamped GPS points, THEA-GS shows a significant speed improvement, being approximately 90 times faster than MCT. For instance, the average time from sample collection to notifying a case and their contacts was approximately 70 and 80 min, respectively. The adoption of this tool encountered challenges, mainly due to drivers' awareness of its purpose and benefits for public health. THEA-GS is a place-based digital contact tracing tool specifically designed to assist National Public Health Institutions in managing infectious disease outbreaks involving the haulage industry as a high-risk group. While its utility, acceptance, and accuracy have not been fully evaluated, our preliminary tests conducted in Uganda indicate the tool's functionality is robust, but social acceptance and adoption are heavily reliant on establishing trust among users.

3.
PLoS One ; 18(6): e0286955, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37289837

RESUMO

INTRODUCTION: Escherichia coli, Klebsiella pneumoniae and Enterobacter (EKE) are the leading cause of mortality and morbidity in neonates in Africa. The management of EKE infections remains challenging given the global emergence of carbapenem resistance in Gram-negative bacteria. This study aimed to investigate the source of EKE organisms for neonates in the maternity environment of a national referral hospital in Uganda, by examining the phenotypic and molecular characteristics of isolates from mothers, neonates, and maternity ward. METHODS: From August 2015 to August 2016, we conducted a cross-sectional study of pregnant women admitted for elective surgical delivery at Mulago hospital in Kampala, Uganda; we sampled (nose, armpit, groin) 137 pregnant women and their newborns (n = 137), as well as health workers (n = 67) and inanimate objects (n = 70 -beds, ventilator tubes, sinks, toilets, door-handles) in the maternity ward. Samples (swabs) were cultured for growth of EKE bacteria and isolates phenotypically/molecularly investigated for antibiotic sensitivity, as well as ß-lactamase and carbapenemase activity. To infer relationships among the EKE isolates, spatial cluster analysis of phenotypic and genotypic susceptibility characteristics was done using the Ridom server. RESULTS: Gram-negative bacteria were isolated from 21 mothers (15%), 15 neonates (11%), 2 health workers (3%), and 13 inanimate objects (19%); a total of 131 Gram-negative isolates were identified of which 104 were EKE bacteria i.e., 23 (22%) E. coli, 50 (48%) K. pneumoniae, and 31 (30%) Enterobacter. Carbapenems were the most effective antibiotics as 89% (93/104) of the isolates were susceptible to meropenem; however, multidrug resistance was prevalent i.e., 61% (63/104). Furthermore, carbapenemase production and carbapenemase gene prevalence were low; 10% (10/104) and 6% (6/104), respectively. Extended spectrum ß-lactamase (ESBL) production occurred in 37 (36%) isolates though 61 (59%) carried ESBL-encoding genes, mainly blaCTX-M (93%, 57/61) implying that blaCTX-M is the ideal gene for tracking ESBL-mediated resistance at Mulago. Additionally, spatial cluster analysis revealed isolates from mothers, new-borns, health workers, and environment with similar phenotypic/genotypic characteristics, suggesting transmission of multidrug-resistant EKE to new-borns. CONCLUSION: Our study shows evidence of transmission of drug resistant EKE bacteria in the maternity ward of Mulago hospital, and the dynamics in the ward are more likely to be responsible for transmission but not individual mother characteristics. The high prevalence of drug resistance genes highlights the need for more effective infection prevention/control measures and antimicrobial stewardship programs to reduce spread of drug-resistant bacteria in the hospital, and improve patient outcomes.


Assuntos
Antibacterianos , Escherichia coli , Gravidez , Humanos , Feminino , Recém-Nascido , Uganda/epidemiologia , Estudos Transversais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , beta-Lactamases , Klebsiella pneumoniae , Hospitais , Enterobacter , Bactérias Gram-Negativas/genética , Testes de Sensibilidade Microbiana
4.
Front Vet Sci ; 10: 1086001, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266384

RESUMO

When studying the dynamics of a pathogen in a host population, one crucial question is whether it transitioned from an epidemic (i.e., the pathogen population and the number of infected hosts are increasing) to an endemic stable state (i.e., the pathogen population reached an equilibrium). For slow-growing and slow-evolving clonal pathogens such as Mycobacterium bovis, the causative agent of bovine (or animal) and zoonotic tuberculosis, it can be challenging to discriminate between these two states. This is a result of the combination of suboptimal detection tests so that the actual extent of the pathogen prevalence is often unknown, as well as of the low genetic diversity, which can hide the temporal signal provided by the accumulation of mutations in the bacterial DNA. In recent years, the increased availability, efficiency, and reliability of genomic reading techniques, such as whole-genome sequencing (WGS), have significantly increased the amount of information we can use to study infectious diseases, and therefore, it has improved the precision of epidemiological inferences for pathogens such as M. bovis. In this study, we use WGS to gain insights into the epidemiology of M. bovis in Cameroon, a developing country where the pathogen has been reported for decades. A total of 91 high-quality sequences were obtained from tissue samples collected in four abattoirs, 64 of which were with complete metadata. We combined these with environmental, demographic, ecological, and cattle movement data to generate inferences using phylodynamic models. Our findings suggest M. bovis in Cameroon is slowly expanding its epidemiological range over time; therefore, endemic stability is unlikely. This suggests that animal movement plays an important role in transmission. The simultaneous prevalence of M. bovis in co-located cattle and humans highlights the risk of such transmission being zoonotic. Therefore, using genomic tools as part of surveillance would vastly improve our understanding of disease ecology and control strategies.

6.
Transbound Emerg Dis ; 69(6): 3198-3215, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36383164

RESUMO

Foot-and-mouth disease (FMD) is one of the most important transboundary animal diseases affecting livestock and wildlife species worldwide. Sustained viral circulation, as evidenced by serological surveys and the recurrence of outbreaks, suggests endemic transmission cycles in some parts of Africa, Asia and the Middle East. This is the result of a complex process in which multiple serotypes, multi-host interactions and numerous socio-epidemiological factors converge to facilitate disease introduction, survival and spread. Spatial and spatio-temporal analyses have been increasingly used to explore the burden of the disease by identifying high-risk areas, analysing temporal trends and exploring the factors that contribute to the outbreaks. We systematically retrieved spatial and spatial-temporal studies on FMD outbreaks to summarize variations on their methodological approaches and identify the epidemiological factors associated with the outbreaks in endemic contexts. Fifty-one studies were included in the final review. A high proportion of papers described and visualized the outbreaks (72.5%) and 49.0% used one or more approaches to study their spatial, temporal and spatio-temporal aggregation. The epidemiological aspects commonly linked to FMD risk are broadly categorizable into themes such as (a) animal demographics and interactions, (b) spatial accessibility, (c) trade, (d) socio-economic and (e) environmental factors. The consistency of these themes across studies underlines the different pathways in which the virus is sustained in endemic areas, with the potential to exploit them to design tailored evidence based-control programmes for the local needs. There was limited data linking the socio-economics of communities and modelled FMD outbreaks, leaving a gap in the current knowledge. A thorough analysis of FMD outbreaks requires a systemic view as multiple epidemiological factors contribute to viral circulation and may improve the accuracy of disease mapping. Future studies should explore the links between socio-economic and epidemiological factors as a foundation for translating the identified opportunities into interventions to improve the outcomes of FMD surveillance and control initiatives in endemic contexts.


Assuntos
Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , Animais , Bovinos , Surtos de Doenças/veterinária , Animais Selvagens , Análise Espaço-Temporal , Doenças dos Bovinos/epidemiologia
7.
Front Oral Health ; 3: 1004930, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211252

RESUMO

Background: Dental caries is a multifactorial disease that affects many people. Even though microorganisms play a crucial role in causing dental caries, diagnosis is routinely macroscopic. In order to improve early detection especially in HIV patients who are disproportionately affected, there is need to reconcile the macroscopic and microscopic characteristics of dental caries. Therefore, the aim of this study was to characterize the oral microbiota profile along the decayed, missing, filled teeth (DMFT) index using amplicon sequencing data. Methods: Amplicon sequencing of the V6-V8 region of the 16S rRNA gene was done on DNA recovered from whole unstimulated saliva of 59 HIV positive and 29 HIV negative individuals. The microbial structure, composition and co-occurrence networks were characterized using QIIME-2, Phyloseq, Microbiome-1.9.2 and Metacoder in R. Results: We characterized the oral microbiota into 2,093 operational taxonomic units (OTUs), 21 phyla and 239 genera from 2.6 million high quality sequence reads. While oral microbiota did not cluster participants into distinct groups that track with the DMFT index, we observed the following: (a) The proportion of accessory microbiota was highest in the high DMFT category while the core size (∼50% of richness) remained relatively stable across all categories. (b) The abundance of core genera such as Stomatobaculum, Peptostreptococcus and Campylobacter was high at onset of dental caries, (c) A general difference in oral microbial biomass. (d) The onset of dental caries (low DMFT) was associated with significantly lower oral microbial entropy. Conclusions: Although oral microbial shifts along the DMFT index were not distinct, we demonstrated the potential utility of microbiota dynamics to characterize oral disease. Therefore, we propose a microbial framework using the DMFT index to better understand dental caries among HIV positive people in resource limited settings.

9.
Front Vet Sci ; 9: 877541, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937301

RESUMO

Despite sub-Saharan Africa (SSA) accounting for ~20% of the global cattle population, prevalence estimates and related risk factors of bovine tuberculosis (bTB) are still poorly described. The increased sensitivity of the IFN-γ assay and its practical benefits suggest the test could be useful to investigate bTB epidemiology in SSA. This study used a population-based sample to estimate bTB prevalence, identify risk factors and estimate the effective reproductive rate in Cameroonian cattle populations. A cross-sectional study was conducted in the North West Region (NWR) and the Vina Division (VIN) of Cameroon in 2013. A regional stratified sampling frame of pastoral cattle herds produced a sample of 1,448 cattle from 100 herds. In addition, a smaller cross-sectional study sampled 60 dairy cattle from 46 small-holder co-operative dairy farmers in the NWR. Collected blood samples were stimulated with bovine and avian purified protein derivatives, with extracted plasma screened using the IFN-γ enzyme-linked immunosorbent assay (Prionics Bovigam®). Design-adjusted population prevalences were estimated, and multivariable mixed-effects logistic regression models using Bayesian inference techniques identified the risk factors for IFN-γ positivity. Using the IFN-γ assay, the prevalence of bTB in the dairy cattle was 21.7% (95% CI: 11.2-32.2). The design-adjusted prevalence of bTB in cattle kept by pastoralists was 11.4% (95% CI: 7.6-17.0) in the NWR and 8.0% (95% CI: 4.7-13.0) in the VIN. A within-herd prevalence estimate for pastoralist cattle also supported that the NWR had higher prevalence herds than the VIN. Additionally, the estimates of the effective reproductive rate R t were 1.12 for the NWR and 1.06 for the VIN, suggesting different transmission rates within regional cattle populations in Cameroon. For pastoral cattle, an increased risk of IFN-γ assay positivity was associated with being male (OR = 1.89; 95% CI:1.15-3.09), increasing herd size (OR = 1.02; 95% CI:1.01-1.03), exposure to the bovine leucosis virus (OR = 2.45; 95% CI: 1.19-4.84) and paratuberculosis (OR = 9.01; 95% CI: 4.17-20.08). Decreased odds were associated with contacts at grazing, buffalo (OR = 0.20; 95% CI: 0.03-0.97) and increased contact with other herds [1-5 herds: OR = 0.16 (95% CI: 0.04-0.55); 6+ herds: OR = 0.18 (95% CI: 0.05-0.64)]. Few studies have used the IFN-γ assay to describe bTB epidemiology in SSA. This study highlights the endemic situation of bTB in Cameroon and potential public health risks from dairy herds. Further work is needed to understand the IFN-γ assay performance, particularly in the presence of co-infections, and how this information can be used to develop control strategies in the SSA contexts.

10.
Front Vet Sci ; 9: 877534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873684

RESUMO

The interferon-gamma (IFN-γ) assay and single comparative cervical skin test (SCITT) are used to estimate bovine tuberculosis (bTB) prevalence globally. Prevalence estimates of bTB, caused by Mycobacterium bovis, are poorly quantified in many Sub-Saharan African (SSA) cattle populations. Furthermore, antemortem diagnostic performance can vary at different stages of bTB pathogenesis and in different cattle populations. In this study, we aim to explore the level of agreement and disagreement between the IFN-γ assay and SCITT test, along with the drivers for disagreement, in a naturally infected African cattle population. In, 2013, a pastoral cattle population was sampled using a stratified clustered cross-sectional study in Cameroon. A total of 100 pastoral cattle herds in the North West Region (NWR) and the Vina Division (VIN) were sampled totalling 1,448 cattle. Individual animal data and herd-level data were collected, and animals were screened using both the IFN-γ assay and SCITT. Serological ELISAs were used to detect exposure to immunosuppressing co-infections. Agreement analyses were used to compare the performance between the two bTB diagnostic tests, and multivariable mixed-effects logistic regression models (MLR) were developed to investigate the two forms of IFN-γ assay and SCITT binary disagreement. Best agreement using the Cohen's κ statistic, between the SCITT (>2 mm) and the IFN-γ assay implied a 'fair-moderate' agreement for the NWR [κ = 0.42 (95%CI: 0.31-0.53)] and 'poor-moderate' for the VIN [κ = 0.33 (95% CI: 0.18-0.47)]. The main test disagreement was the animals testing positive on the IFN-γ assay and negative by the SCITT. From MLR modeling, adults (adults OR: 7.57; older adults OR = 7.21), females (OR = 0.50), bovine leucosis (OR = 2.30), and paratuberculosis positivity (OR = 6.54) were associated with IFN-γ-positive/SCITT-negative disagreement. Subsets to investigate diagnostic test disagreement for being SCITT-positive and IFN-γ-negative also identified that adults (adults OR = 15.74; older adults OR = 9.18) were associated with IFN-γ-negative/SCITT-positive disagreement. We demonstrate that individual or combined use of the IFN-γ assay and SCITT can lead to a large variation in bTB prevalence estimates. Considering that animal level factors were associated with disagreement between the IFN-γ assay and SCITT in this study, future work should further investigate their impact on diagnostic test performance to develop the approaches to improve SSA prevalence estimates.

11.
BMJ Open ; 12(9): e058457, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36691163

RESUMO

INTRODUCTION: At the peak of Uganda's first wave of SARS-CoV-2 in May 2020, one in three COVID-19 cases was linked to the haulage sector. This triggered a mandatory requirement for a negative PCR test result at all ports of entry and exit, resulting in significant delays as haulage drivers had to wait for 24-48 hours for results, which severely crippled the regional supply chain.To support public health and economic recovery, we aim to develop and test a mobile phone-based digital contact tracing (DCT) tool that both augments conventional contact tracing and also increases its speed and efficiency. METHODS AND ANALYSIS: To test the DCT tool, we will use a stratified sample of haulage driver journeys, stratified by route type (regional and local journeys).We will include at least 65% of the haulage driver journeys ~83 200 on the network through Uganda. This allows us to capture variations in user demographics and socioeconomic characteristics that could influence the use and adoption of the DCT tool. The developed DCT tool will include a mobile application and web interface to collate and intelligently process data, whose output will support decision-making, resource allocation and feed mathematical models that predict epidemic waves.The main expected result will be an open source-tested DCT tool tailored to haulage use in developing countries.This study will inform the safe deployment of DCT technologies needed for combatting pandemics in low-income countries. ETHICS AND DISSEMINATION: This work has received ethics approval from the School of Public Health Higher Degrees, Research and Ethics Committee at Makerere University and The Uganda National Council for Science and Technology. This work will be disseminated through peer-reviewed publications, our websites https://project-thea.org/ and Github for the open source code https://github.com/project-thea/.


Assuntos
COVID-19 , Aplicativos Móveis , Humanos , Busca de Comunicante/métodos , SARS-CoV-2 , Saúde Pública , Uganda
12.
Sci Rep ; 11(1): 24486, 2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-34966183

RESUMO

Information on microbiota dynamics in pulmonary tuberculosis (TB) in Africa is scarce. Here, we sequenced sputa from 120 treatment-naïve TB patients in Uganda, and investigated changes in microbiota of 30 patients with treatment-response follow-up samples. Overall, HIV-status and anti-TB treatment were associated with microbial structural and abundance changes. The predominant phyla were Bacteroidetes, Firmicutes, Proteobacteria, Fusobacteria and Actinobacteria, accounting for nearly 95% of the sputum microbiota composition; the predominant genera across time were Prevotella, Streptococcus, Veillonella, Haemophilus, Neisseria, Alloprevotella, Porphyromonas, Fusobacterium, Gemella, and Rothia. Treatment-response follow-up at month 2 was characterized by a reduction in abundance of Mycobacterium and Fretibacterium, and an increase in Ruminococcus and Peptococcus; month 5 was characterized by a reduction in Tannerella and Fusobacterium, and an increase in members of the family Neisseriaceae. The microbiota core comprised of 44 genera that were stable during treatment. Hierarchical clustering of this core's abundance distinctly separated baseline (month 0) samples from treatment follow-up samples (months 2/5). We also observed a reduction in microbial diversity with 9.1% (CI 6-14%) of the structural variation attributed to HIV-status and anti-TB treatment. Our findings show discernible microbiota signals associated with treatment with potential to inform anti-TB treatment response monitoring.


Assuntos
Escarro/microbiologia , Tuberculose Pulmonar/microbiologia , Adulto , Antituberculosos/uso terapêutico , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Feminino , Humanos , Estudos Longitudinais , Masculino , Microbiota/efeitos dos fármacos , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/epidemiologia , Uganda/epidemiologia
13.
Trop Med Infect Dis ; 6(4)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34698282

RESUMO

Antibiotic resistance and its mechanisms have been known for over six decades, but global efforts to characterize its routine drivers have only gained momentum in the recent past. Drivers of clinical and community resistance go beyond just clinical practice, which is why one-health approaches offer the most realistic option for controlling antibiotic resistance. It is noteworthy that the emergence of resistance occurs naturally in the environment, but akin to climate change, the current accelerated emergence and spread bears hallmarks of anthropomorphic influence. If left unchecked, this can undo the medical and agricultural advancements of the last century. The WHO recommends that nations develop, adopt, and implement strategies that track the changing trends in antibiotic resistance levels to tackle this problem. This article examines efforts and progress in developing and implementing a human health antimicrobial resistance surveillance strategy in Uganda. We do so within the context of the National Action Plan for tackling antimicrobial resistance (AMR-NAP) launched in 2018. We discuss the technical milestones and progress in implementing surveillance of GLASS priority pathogens under this framework. The preliminary output of the framework examines the performance and compares AMR and AMU surveillance data to explain observed trends. We conclude that Uganda is making progress in developing and implementing a functional AMR surveillance strategy for human health.

14.
PLoS Negl Trop Dis ; 15(7): e0009529, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34292932

RESUMO

Universal access to healthcare, including quality medicines, is a fundamental human right but is still out of reach for many in low- and middle-income countries (LMICs). An existing framework capturing variability of access to healthcare in low-resource settings includes the 5 dimensions: availability, accessibility, affordability, adequacy, and acceptability. This framework encompasses key components, including health infrastructure and means to access it as well as service organisation, costs, and factors that influence users' satisfaction. However, in reality, the effectiveness of accessed healthcare is measured by the likelihood of a positive outcome. We therefore propose an expansion of this framework to include an additional dimension, "aspects of quality," incorporating quality, which critically influences the ability of the accessed services to generate optimal health outcomes. Within this framework, we explore literature from East Africa likely relevant to a range of LMIC contexts, mainly focusing on the provision of widely used antimicrobials such as antimalarials and antibiotics. We argue that major inadequacies exist across all 6 dimensions of access and quality of drugs and their provision. While the global focus is on curbing excessive antimicrobial use to tackle the antimicrobial resistance (AMR) crisis, major constraints around access shape patients' health-seeking decisions leading to potentially problematic practices that might exacerbate the AMR problem. We advocate for a holistic approach to tackling these inadequacies, encompassing all dimensions of access and quality of healthcare in order to improve health outcomes while simultaneously counteracting the AMR crisis.


Assuntos
Infecções Bacterianas/microbiologia , Farmacorresistência Bacteriana , África Oriental , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/tratamento farmacológico , Acessibilidade aos Serviços de Saúde , Humanos , Qualidade da Assistência à Saúde
15.
Zoonoses Public Health ; 68(7): 781-793, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34129288

RESUMO

Previous work identified that bacterial zoonoses (Brucella species, Coxiella burnetii and Leptospira hardjo) were present in Cameroonian pastoral cattle. To assess the characteristics of this zoonotic risk, we analyse seroprevalence of each pathogen and the associated management, herd and environmental factors in Cameroonian pastoral and dairy cattle. Cross-sectional samples included pastoralist herds in the Northwest Region (NWR n = 750) and Vina Division (VD n = 748) and small holder dairy herds in the NWR (n = 60). Exposure to Brucella spp., C. burnetii and L. hardjo were screened for using commercial ELISAs and population adjusted estimates made. In addition, individual, herd and ecological metadata were collected and used to identify risk factors associated with animal-level seropositivity. In the pastoral cattle, seroprevalence to Brucella spp. was relatively low but was higher in the NWR (4.2%, CI: 2.5%-7.0%) than the VD (1.1%: CI 0.5%-2.4%), while L. hardjo seroprevalence was much higher though similar in the NWR (30.7%, CI 26.3%-35.5%) and VD (35.9%, CI 31.3%-40.7%). No differences were noted in C. burnetii seroprevalence between the two study sites (NWR: 14.6%, CI 11.8%-18.0%. VD: 12.4%, 9.6%-15.9%). Compared to pastoral, dairy cattle had lower seroprevalences for L. hardjo (1.7%, CI: 0.0%-4.9%), C. burnetii (0.0%, CI 0.0%-6.0%) but similar for Brucella spp. (5.0%, CI 0.0%-10.6%). Increased odds of Brucella spp. seropositivity were associated with owning sheep or rearing sheep and fencing cattle in at night. Adult cattle had increased odds of being seropositive for both C. burnetii and L. hardjo. Additionally, exposure to C. burnetii was associated with local ecological conditions and L. hardjo was negatively associated with cattle undertaking transhumance. This work highlights that exposure to these 3 important production diseases and occupational zoonoses are widespread in Cameroonian cattle. Further work is required to understand transmission dynamics between humans and livestock to inform implementation of effective control measures.


Assuntos
Brucelose , Doenças dos Bovinos , Coxiella burnetii , Febre Q , Doenças dos Ovinos , Animais , Anticorpos Antibacterianos , Zoonoses Bacterianas/epidemiologia , Brucelose/epidemiologia , Brucelose/veterinária , Camarões/epidemiologia , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Estudos Transversais , Ensaio de Imunoadsorção Enzimática/veterinária , Febre Q/epidemiologia , Febre Q/veterinária , Fatores de Risco , Estudos Soroepidemiológicos , Ovinos , Doenças dos Ovinos/epidemiologia , Zoonoses/epidemiologia
16.
Int J Vet Sci Med ; 9(1): 11-21, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34104644

RESUMO

There are increasing reports of antimicrobial treatment failures for bacterial diseases of poultry in Uganda. The paucity of data on antimicrobial resistance (AMR) of pathogenic bacteria in Uganda is a major setback to AMR control. This study investigated the occurrence of fowl typhoid, colibacillosis, and AMR in associated pathogens from 2012 to 2018. Laboratory records from the Central Diagnostic Laboratory (CDL), a National Veterinary Diagnostic Facility located at Makerere University, were reviewed. Archived isolates of the causative bacteria for the two diseases were also evaluated for AMR. The frequencies of the two disease conditions, their clinical and necropsy presentations and the demographic data of the diagnostic samples were summarized from the records. Archived bacterial isolates were revived before antimicrobial susceptibility testing. This was done on Mueller Hinton agar using the disk diffusion method, against 16 antimicrobials of medical and veterinary importance according to the Clinical Laboratory Standards Institute guidelines. A total of 697 poultry cases were presented for bacteriological investigations in the review period. Colibacillosis and salmonellosis had prevalence rates of 39.7% (277/697) and 16.2% (113/697), respectively. A total of 63 and 92 isolates of Escherichia coli and Salmonella spp., respectively, were archived but 43 (68.3%) E. coli and 47 (51.1%) Salmonella spp. isolates were recovered and evaluated for AMR. Multidrug resistance was more frequent in E. coli (38; 88.4%) than salmonellae (25; 53.2%), (p < 0.001). The high prevalence of colibacillosis, salmonellosis and the AMR of associated pathogens warrants immediate institution of appropriate disease control measures.

17.
Anim Microbiome ; 3(1): 22, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663618

RESUMO

BACKGROUND: Clinical intervention during bacterial infections in farm animals such as pigs commonly includes the use of antimicrobials. With the rise of antimicrobial resistance and the attempts to reduce the use of antibiotics in food animals, effective alternatives are urgently needed to reduce or even remove pathogens and disease risks. Improving clinical outcomes and overall pig health by using probiotics appears attractive. However, reliable data sets on the efficacy of probiotics are scarce. The obligate intracellular bacterium Lawsonia intracellularis is widespread in pigs and associated with severe enteropathy, mainly in the ileum, commonly resulting in substantial reduction in weight gain. The impact of three in-feed probiotics and a commercial live L. intracellularis vaccine was compared in a pig challenge model. Probiotic treatment was associated with reduced L. intracellularis fecal shedding and reduced gut lesions. Here, the bacterial microbiota of the ileum of these pigs was characterized with 16S rRNA gene sequencing and was subsequently analyzed with bioinformatics tools. RESULTS: The greatest microbial richness was observed in the probiotic treated group T03-LAW, which accounted for 87% of richness observed in the study. Treatment had a significant impact on both the microbiota structure and taxonomic profile in the ileum, explaining between 26 and 36% of the structural variation, with the strongest association in the T03-LAW group. Overall, the largest changes were observed for the pigs treated with in-feed Bacillus pumilus; the microbiota of these pigs had the greatest diversity and highest richness. We also observed depleted and enriched core microbiota amongst the groups; however, there was no correlation with clinical characteristics. The results suggest that an increased diversity of the ileal microbiota is associated with a reduction in shedding, i.e. a unit increase in Shannon diversity index resulted in 2.8 log reduction in shedding. CONCLUSIONS: Probiotic supplementation of a base feed ration increased ileum microbiota diversity leading to a mitigation of the effects of a pathogenic L. intracellularis challenge. An even and diverse microbiota community benefits pigs infected with L. intracellularis, however, investigations are needed to determine if this is also true for other pathogens. The study unambiguously demonstrates the usefulness of probiotic supplementation in reducing the impact of enteric pathogens and pathogen shedding rates in food animals without the use of antimicrobials.

18.
Front Genet ; 11: 550215, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281865

RESUMO

Bovine Tuberculosis (bTB) caused by Mycobacterium bovis is a livestock disease of global economic and public health importance. There are currently no effective vaccines available for livestock and so control relies on animal level surveillance and pasteurization of dairy products. A new alternative control approach is to exploit the genetic variability of the host; recent studies have demonstrated that breeding European taurine cattle, such as Holsteins for increased resistance to bTB is feasible. The utility of such an approach is still unknown for African cattle populations. This study aims to assess genetic variation in bTB resistance and the underlying genomic architecture of cattle in Cameroon. We conducted a cross-sectional study of 2,346 slaughter cattle in Cameroon. Retropharyngeal lymph node samples were collected and cultured on Lowenstein Jensen media and the BACTEC MGIT 960 system, and M. bovis was identified using the Hain® Genotype kits. A total of 153 cattle were positive for M. bovis and were archived along with a random selection of negative samples. In this study, we genotyped archived samples from 212 cattle. Their genomic diversity was characterized using PCA, hierarchical clustering and admixture analysis. We assessed genetic variation in bTB resistance using heritability analysis and compared quantitative trait loci. Previous research on this study population have shown that Fulani cattle are more susceptible to bTB than mixed breeds. However, here we show that these apparent phenotypic differences in breeds are not reflected by clear genomic differences. At the genetic level, both the Fulani and mixed cattle show similar patterns of admixture with evidence of both taurine and indicine ancestry. There was little European taurine introgression within the studied population. Hierarchical clustering showed clusters of cattle that differed in their susceptibility to bTB. Our findings allude to bTB resistance being polygenic in nature. This study highlights the potential for genetic control of bTB in Africa and the need for further research into the genetics of bTB resistance within African cattle populations.

19.
Sci Rep ; 10(1): 1708, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015392

RESUMO

Group antimicrobial administration is used to control disease in livestock, but we have little insight into how this impacts antimicrobial resistance (AMR) gene dynamics. Here, a longitudinal study was carried out during a single production cycle on a commercial pig unit with high historic and current antimicrobial usage. Quantitative PCR, 16S rRNA gene metabarcoding and shotgun metagenomic sequencing were used to track faecal AMR gene abundance and diversity and microbiome alpha diversity. Shotgun metagenomic sequencing identified 144 AMR genes in total, with higher AMR gene diversity present in young pigs compared to dry sows. Irrespective of in-feed antibiotic treatment or changes in microbiome diversity, mean AMR gene copy number was consistently high, with some AMR genes present at copy numbers comparable to the bacterial 16S rRNA gene. In conclusion, AMR gene prevalence and abundance were not influenced by antibiotic use, either during the production cycle or following whole-herd medication. The high levels of certain genes indicate they are widely disseminated throughout the microbial population, potentially aiding stability. Despite the high and relatively stable levels of resistance genes against the main antimicrobials used, these compounds continue to control production limiting diseases on this unit.


Assuntos
Anti-Infecciosos/uso terapêutico , Infecções Bacterianas/prevenção & controle , Farmacorresistência Bacteriana/genética , Doenças dos Suínos/prevenção & controle , Suínos , Animais , Gestão de Antimicrobianos , Fazendas , Fezes/microbiologia , RNA Ribossômico 16S/genética
20.
Front Public Health ; 7: 156, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297365

RESUMO

Background: In this study, we focused on three zoonotic brucellosis risk groups; abattoir workers, febrile cases at Wau hospital and cattle herders, in Bahr el Ghazal region, South Sudan. Competitive c-ELISA was used to detect anti-Brucella antibodies in 725 individuals between December 2015 and May 2016. In addition, questionnaire metadata, focus group discussions and key informant interviews were used to characterize the epidemiology of zoonotic brucellosis in this region. Results: Overall, we estimate 27.2 % (95% CI = 23.9-30.6) brucellosis sero-prevalence; 32.1% (95% CI = 26.2-38.4), 23.0% (95% CI = 19.1-27.4) and 34.6% (95% CI = 24.4-46.3) among abattoir workers, febrile cases, and herders, respectively. Marital status (Single, OR = 0.58, 95%CI: 0.36-0.91, P = 0.02) and ethnicity (Kerash OR = 6.01, 95%CI: 1.97-21.10, P = 0.003 and Balanda, OR = 3.78, 95%CI: 1.42-12.02, P = 0.01) were associated with brucellosis. While gender and ethnicity were important factors for general awareness of zoonotic diseases. Highly ranked occupations at risk included veterinarian, butchers and milk handlers. We also identified covariate patterns for clinical diagnostics and public health interventions. Conclusion: We report the highest sero-prevalence of zoonotic brucellosis in three risk groups in the East African region. All this is not only occurring in a population with limited awareness that brucellosis is a zoonotic disease but also where one in nine health workers tested was sero-positive. We identified social demographic associations with brucellosis, however, the qualitative analysis suggests these are more complex and nuanced. Therefore, future studies could benefit from the use of the mixed methods approach to add extensiveness and depth to our understanding of zoonotic disease drivers, in order to implement mitigating measures such as cattle vaccination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA