Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
1.
BMC Med Genomics ; 17(1): 255, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39449055

RESUMO

The abundance of Lp(a) protein holds significant implications for the risk of cardiovascular disease (CVD), which is directly impacted by the copy number (CN) of KIV-2, a 5.5 kbp sub-region. KIV-2 is highly polymorphic in the population and accurate analysis is challenging. In this study, we present the DRAGEN KIV-2 CN caller, which utilizes short reads. Data across 166 WGS show that the caller has high accuracy, compared to optical mapping and can further phase approximately 50% of the samples. We compared KIV-2 CN numbers to 24 previously postulated KIV-2 relevant SNVs, revealing that many are ineffective predictors of KIV-2 copy number. Population studies, including USA-based cohorts, showed distinct KIV-2 CN, distributions for European-, African-, and Hispanic-American populations and further underscored the limitations of SNV predictors. We demonstrate that the CN estimates correlate significantly with the available Lp(a) protein levels and that phasing is highly important.


Assuntos
Alelos , Doenças Cardiovasculares , Lipoproteína(a) , Humanos , Doenças Cardiovasculares/genética , Lipoproteína(a)/genética , Lipoproteína(a)/sangue , Variações do Número de Cópias de DNA , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único
2.
bioRxiv ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39282326

RESUMO

Background: Human noroviruses are a leading cause of acute and sporadic gastroenteritis worldwide. The evolution of human noroviruses in immunocompromised persons has been evaluated in many studies. Much less is known about the evolutionary dynamics of human norovirus in healthy adults. Methods: We used sequential samples collected from a controlled human infection study with GI.1/Norwalk/US/68 virus to evaluate intra- and inter-host evolution of a human norovirus in healthy adults. Up to 12 samples from day 1 to day 56 post-challenge were sequenced using a norovirus-specific capture probe method. Results: Complete genomes were assembled, even in samples that were below the limit of detection of standard RT-qPCR assays, up to 28 days post-challenge. Analysis of 123 complete genomes showed changes in the GI.1 genome in all persons, but there were no conserved changes across all persons. Single nucleotide variants resulting in non-synonymous amino acid changes were observed in all proteins, with the capsid VP1 and nonstructural protein NS3 having the largest numbers of changes. Conclusions: These data highlight the potential of a new capture-based sequencing approach to assemble human norovirus genomes with high sensitivity and demonstrate limited conserved immune pressure-driven evolution of GI.1 virus in healthy adults.

3.
bioRxiv ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39282457

RESUMO

Every viral infection entails an evolving population of viral genomes. High-throughput sequencing technologies can be used to characterize such populations, but to date there are few published examples of such work. In addition, mixed sequencing data are sometimes used to infer properties of infecting genomes without discriminating between genome-derived reads and reads from the much more abundant, in the case of a typical active viral infection, transcripts. Here we apply capture probe-based short read high-throughput sequencing to nasal wash samples taken from a previously described group of adult hematopoietic cell transplant (HCT) recipients naturally infected with respiratory syncytial virus (RSV). We separately analyzed reads from genomes and transcripts for the levels and distribution of genetic variation by calculating per position Shannon entropies. Our analysis reveals a low level of genetic variation within the RSV infections analyzed here, but with interesting differences between genomes and transcripts in 1) average per sample Shannon entropies; 2) the genomic distribution of variation 'hotspots'; and 3) the genomic distribution of hotspots encoding alternative amino acids. In all, our results suggest the importance of separately analyzing reads from genomes and transcripts when interpreting high-throughput sequencing data for insight into intra-host viral genome replication, expression, and evolution.

4.
bioRxiv ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39345650

RESUMO

Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in children worldwide, while human noroviruses (HuNoV) are a leading cause of epidemic and sporadic acute gastroenteritis. Generating full-length genome sequences for these viruses is crucial for understanding viral diversity and tracking emerging variants. However, obtaining high-quality sequencing data is often challenging due to viral strain variability, quality, and low titers. Here, we present a set of comprehensive oligonucleotide probe sets designed from 1,570 RSV and 1,376 HuNoV isolate sequences in GenBank. Using these probe sets and a capture enrichment sequencing workflow, 85 RSV positive nasal swab samples and 55 (49 stool and six human intestinal enteroids) HuNoV positive samples encompassing major subtypes and genotypes were characterized. The Ct values of these samples ranged from 17.0-29.9 for RSV, and from 20.2-34.8 for HuNoV, with some HuNoV having below the detection limit. The mean percentage of post-processing reads mapped to viral genomes was 85.1% for RSV and 40.8% for HuNoV post-capture, compared to 0.08% and 1.15% in pre-capture libraries, respectively. Full-length genomes were>99% complete in all RSV positive samples and >96% complete in 47/55 HuNoV positive samples-a significant improvement over genome recovery from pre-capture libraries. RSV transcriptome (subgenomic mRNAs) sequences were also characterized from this data. Probe-based capture enrichment offers a comprehensive approach for RSV and HuNoV genome sequencing and monitoring emerging variants.

5.
bioRxiv ; 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39345378

RESUMO

The Genome in a Bottle Consortium (GIAB), hosted by the National Institute of Standards and Technology (NIST), is developing new matched tumor-normal samples, the first to be explicitly consented for public dissemination of genomic data and cell lines. Here, we describe a comprehensive genomic dataset from the first individual, HG008, including DNA from an adherent, epithelial-like pancreatic ductal adenocarcinoma (PDAC) tumor cell line and matched normal cells from duodenal and pancreatic tissues. Data for the tumor-normal matched samples comes from thirteen distinct state-of-the-art whole genome measurement technologies, including high depth short and long-read bulk whole genome sequencing (WGS), single cell WGS, and Hi-C, and karyotyping. These data will be used by the GIAB Consortium to develop matched tumor-normal benchmarks for somatic variant detection. We expect these data to facilitate innovation for whole genome measurement technologies, de novo assembly of tumor and normal genomes, and bioinformatic tools to identify small and structural somatic mutations. This first-of-its-kind broadly consented open-access resource will facilitate further understanding of sequencing methods used for cancer biology.

6.
Cell Genom ; 4(7): 100590, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38908378

RESUMO

The duplication-triplication/inverted-duplication (DUP-TRP/INV-DUP) structure is a complex genomic rearrangement (CGR). Although it has been identified as an important pathogenic DNA mutation signature in genomic disorders and cancer genomes, its architecture remains unresolved. Here, we studied the genomic architecture of DUP-TRP/INV-DUP by investigating the DNA of 24 patients identified by array comparative genomic hybridization (aCGH) on whom we found evidence for the existence of 4 out of 4 predicted structural variant (SV) haplotypes. Using a combination of short-read genome sequencing (GS), long-read GS, optical genome mapping, and single-cell DNA template strand sequencing (strand-seq), the haplotype structure was resolved in 18 samples. The point of template switching in 4 samples was shown to be a segment of ∼2.2-5.5 kb of 100% nucleotide similarity within inverted repeat pairs. These data provide experimental evidence that inverted low-copy repeats act as recombinant substrates. This type of CGR can result in multiple conformers generating diverse SV haplotypes in susceptible dosage-sensitive loci.


Assuntos
Haplótipos , Humanos , Haplótipos/genética , Hibridização Genômica Comparativa , Variação Estrutural do Genoma/genética , Genoma Humano/genética , Duplicação Gênica/genética
7.
Genome Med ; 16(1): 53, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570875

RESUMO

BACKGROUND: NODAL signaling plays a critical role in embryonic patterning and heart development in vertebrates. Genetic variants resulting in perturbations of the TGF-ß/NODAL signaling pathway have reproducibly been shown to cause laterality defects in humans. To further explore this association and improve genetic diagnosis, the study aims to identify and characterize a broader range of NODAL variants in a large number of individuals with laterality defects. METHODS: We re-analyzed a cohort of 321 proband-only exomes of individuals with clinically diagnosed laterality congenital heart disease (CHD) using family-based, rare variant genomic analyses. To this cohort we added 12 affected subjects with known NODAL variants and CHD from institutional research and clinical cohorts to investigate an allelic series. For those with candidate contributory variants, variant allele confirmation and segregation analysis were studied by Sanger sequencing in available family members. Array comparative genomic hybridization and droplet digital PCR were utilized for copy number variants (CNV) validation and characterization. We performed Human Phenotype Ontology (HPO)-based quantitative phenotypic analyses to dissect allele-specific phenotypic differences. RESULTS: Missense, nonsense, splice site, indels, and/or structural variants of NODAL were identified as potential causes of heterotaxy and other laterality defects in 33 CHD cases. We describe a recurrent complex indel variant for which the nucleic acid secondary structure predictions implicate secondary structure mutagenesis as a possible mechanism for formation. We identified two CNV deletion alleles spanning NODAL in two unrelated CHD cases. Furthermore, 17 CHD individuals were found (16/17 with known Hispanic ancestry) to have the c.778G > A:p.G260R NODAL missense variant which we propose reclassification from variant of uncertain significance (VUS) to likely pathogenic. Quantitative HPO-based analyses of the observed clinical phenotype for all cases with p.G260R variation, including heterozygous, homozygous, and compound heterozygous cases, reveal clustering of individuals with biallelic variation. This finding provides evidence for a genotypic-phenotypic correlation and an allele-specific gene dosage model. CONCLUSION: Our data further support a role for rare deleterious variants in NODAL as a cause for sporadic human laterality defects, expand the repertoire of observed anatomical complexity of potential cardiovascular anomalies, and implicate an allele specific gene dosage model.


Assuntos
Cardiopatias Congênitas , Síndrome de Heterotaxia , Transposição dos Grandes Vasos , Animais , Humanos , Artérias , Hibridização Genômica Comparativa , Cardiopatias Congênitas/genética , Síndrome de Heterotaxia/genética , Fenótipo
8.
Sci Rep ; 14(1): 8988, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637560

RESUMO

Esophageal adenocarcinoma is the most common histological subtype of esophageal cancer in Western countries and shows poor prognosis with rapid growth. EAC is characterized by a strong male predominance and racial disparity. EAC is up to fivefold more common among Whites than Blacks, yet Black patients with EAC have poorer survival rates. The racial disparity remains largely unknown, and there is limited knowledge of mutations in EAC regarding racial disparities. We used whole-exome sequencing to show somatic mutation profiles derived from tumor samples from 18 EAC male patients. We identified three molecular subgroups based on the pre-defined esophageal cancer-specific mutational signatures. Group 1 is associated with age and NTHL1 deficiency-related signatures. Group 2 occurs primarily in Black patients and is associated with signatures related to DNA damage from oxidative stress and NTHL1 deficiency-related signatures. Group 3 is associated with defective homologous recombination-based DNA often caused by BRCA mutation in White patients. We observed significantly mutated race related genes (LCE2B in Black, SDR39U1 in White) were (q-value < 0.1). Our findings underscore the possibility of distinct molecular mutation patterns in EAC among different races. Further studies are needed to validate our findings, which could contribute to precision medicine in EAC.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Feminino , Humanos , Masculino , Adenocarcinoma/genética , Adenocarcinoma/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Mutação , Negro ou Afro-Americano , Brancos , Sequenciamento do Exoma
9.
medRxiv ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38562723

RESUMO

Comprehending the mechanism behind human diseases with an established heritable component represents the forefront of personalized medicine. Nevertheless, numerous medically important genes are inaccurately represented in short-read sequencing data analysis due to their complexity and repetitiveness or the so-called 'dark regions' of the human genome. The advent of PacBio as a long-read platform has provided new insights, yet HiFi whole-genome sequencing (WGS) cost remains frequently prohibitive. We introduce a targeted sequencing and analysis framework, Twist Alliance Dark Genes Panel (TADGP), designed to offer phased variants across 389 medically important yet complex autosomal genes. We highlight TADGP accuracy across eleven control samples and compare it to WGS. This demonstrates that TADGP achieves variant calling accuracy comparable to HiFi-WGS data, but at a fraction of the cost. Thus, enabling scalability and broad applicability for studying rare diseases or complementing previously sequenced samples to gain insights into these complex genes. TADGP revealed several candidate variants across all cases and provided insight into LPA diversity when tested on samples from rare disease and cardiovascular disease cohorts. In both cohorts, we identified novel variants affecting individual disease-associated genes (e.g., IKZF1, KCNE1). Nevertheless, the annotation of the variants across these 389 medically important genes remains challenging due to their underrepresentation in ClinVar and gnomAD. Consequently, we also offer an annotation resource to enhance the evaluation and prioritization of these variants. Overall, we can demonstrate that TADGP offers a cost-efficient and scalable approach to routinely assess the dark regions of the human genome with clinical relevance.

10.
JAMA Netw Open ; 7(3): e244170, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38546643

RESUMO

Importance: Determining the impact of germline cancer-predisposition variants (CPVs) on outcomes could inform novel approaches to testing and treating children with rhabdomyosarcoma. Objective: To assess whether CPVs are associated with outcome among children with rhabdomyosarcoma. Design, Setting, and Participants: In this cohort study, data were obtained for individuals, aged 0.01-23.23 years, newly diagnosed with rhabdomyosarcoma who were treated across 171 Children's Oncology Group sites from March 15, 1999, to December 8, 2017. Data analysis was performed from June 16, 2021, to May 15, 2023. Exposure: The presence of a CPV in 24 rhabdomyosarcoma-associated cancer-predisposition genes (CPGs) or an expanded set of 63 autosomal-dominant CPGs. Main Outcomes and Measures: Overall survival (OS) and event-free survival (EFS) were the main outcomes, using the Kaplan-Meier estimator to assess survival probabilities and the Cox proportional hazards regression model to adjust for clinical covariates. Analyses were stratified by tumor histology and the fusion status of PAX3 or PAX7 to the FOXO1 gene. Results: In this study of 580 individuals with rhabdomyosarcoma, the median patient age was 5.9 years (range, 0.01-23.23 years), and the male-to-female ratio was 1.5 to 1 (351 [60.5%] male). For patients with CPVs in rhabdomyosarcoma-associated CPGs, EFS was 48.4% compared with 57.8% for patients without a CPV (P = .10), and OS was 53.7% compared with 65.3% for patients without a CPV (P = .06). After adjustment, patients with CPVs had significantly worse OS (adjusted hazard ratio [AHR], 2.49 [95% CI, 1.39-4.45]; P = .002), and the outcomes were not better among patients with embryonal histology (EFS: AHR, 2.25 [95% CI, 1.25-4.06]; P = .007]; OS: AHR, 2.83 [95% CI, 1.47-5.43]; P = .002]). These associations were not due to the development of a second malignant neoplasm, and importantly, patients with fusion-negative rhabdomyosarcoma who harbored a CPV had similarly inferior outcomes as patients with fusion-positive rhabdomyosarcoma without CPVs (EFS: AHR, 1.35 [95% CI, 0.71-2.59]; P = .37; OS: AHR, 1.71 [95% CI, 0.84-3.47]; P = .14). There were no significant differences in outcome by CPV status of the 63 CPG set. Conclusions and Relevance: This cohort study identified a group of patients with embryonal rhabdomyosarcoma who had a particularly poor outcome. Other important clinical findings included that individuals with TP53 had poor outcomes independent of second malignant neoplasms and that patients with fusion-negative rhabdomyosarcoma who harbored a CPV had outcomes comparable to patients with fusion-positive rhabdomyosarcoma. These findings suggest that germline CPV testing may aid in clinical prognosis and should be considered in prospective risk-based clinical trials.


Assuntos
Segunda Neoplasia Primária , Rabdomiossarcoma , Criança , Humanos , Feminino , Masculino , Estudos de Coortes , Estudos Prospectivos , Rabdomiossarcoma/genética , Rabdomiossarcoma/terapia , Testes Genéticos , Células Germinativas
11.
BMC Res Notes ; 17(1): 62, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433186

RESUMO

OBJECTIVE: Data from DNA genotyping via a 96-SNP panel in a study of 25,015 clinical samples were utilized for quality control and tracking of sample identity in a clinical sequencing network. The study aimed to demonstrate the value of both the precise SNP tracking and the utility of the panel for predicting the sex-by-genotype of the participants, to identify possible sample mix-ups. RESULTS: Precise SNP tracking showed no sample swap errors within the clinical testing laboratories. In contrast, when comparing predicted sex-by-genotype to the provided sex on the test requisition, we identified 110 inconsistencies from 25,015 clinical samples (0.44%), that had occurred during sample collection or accessioning. The genetic sex predictions were confirmed using additional SNP sites in the sequencing data or high-density genotyping arrays. It was determined that discrepancies resulted from clerical errors (49.09%), samples from transgender participants (3.64%) and stem cell or bone marrow transplant patients (7.27%) along with undetermined sample mix-ups (40%) for which sample swaps occurred prior to arrival at genome centers, however the exact cause of the events at the sampling sites resulting in the mix-ups were not able to be determined.


Assuntos
Serviços de Laboratório Clínico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Transplante de Medula Óssea , Genótipo , Laboratórios
12.
Virus Evol ; 10(1): vead086, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361816

RESUMO

Respiratory syncytial virus (RSV) infection in immunocompromised individuals often leads to prolonged illness, progression to severe lower respiratory tract infection, and even death. How the host immune environment of the hematopoietic stem cell transplant (HCT) adults can affect viral genetic variation during an acute infection is not understood well. In the present study, we performed whole genome sequencing of RSV/A or RSV/B from samples collected longitudinally from HCT adults with normal (<14 days) and delayed (≥14 days) RSV clearance who were enrolled in a ribavirin trial. We determined the inter-host and intra-host genetic variation of RSV and the effect of mutations on putative glycosylation sites. The inter-host variation of RSV is centered in the attachment (G) and fusion (F) glycoprotein genes followed by polymerase (L) and matrix (M) genes. Interestingly, the overall genetic variation was constant between normal and delayed clearance groups for both RSV/A and RSV/B. Intra-host variation primarily occurred in the G gene followed by non-structural protein (NS1) and L genes; however, gain or loss of stop codons and frameshift mutations appeared only in the G gene and only in the delayed viral clearance group. Potential gain or loss of O-linked glycosylation sites in the G gene occurred both in RSV/A and RSV/B isolates. For RSV F gene, loss of N-linked glycosylation site occurred in three RSV/B isolates within an antigenic epitope. Both oral and aerosolized ribavirin did not cause any mutations in the L gene. In summary, prolonged viral shedding and immune deficiency resulted in RSV variation, especially in structural mutations in the G gene, possibly associated with immune evasion. Therefore, sequencing and monitoring of RSV isolates from immunocompromised patients are crucial as they can create escape mutants that can impact the effectiveness of upcoming vaccines and treatments.

13.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38187744

RESUMO

Gut microbiota produce tryptophan metabolites (TMs) important to homeostasis. However, measuring TM levels in stool and determining their microbial sources can be difficult. Here, we measured TMs from the indole pathway in fecal samples from 21 healthy adults with the goal to: 1) determine fecal TM concentrations in healthy individuals; 2) link TM levels to bacterial abundance using 16S and whole genome shotgun (WGS) sequencing data; and 3) predict likely bacterial sources of TM production. Within our samples, we identified 151 genera (16S) and 592 bacterial species (WGS). Eight TMs were found in ≥17 fecal samples, including four in all persons. To our knowledge, we are the first to report fecal levels for indole-3-lactate, indole-3-propionate, and 3-indoleacrylate levels in healthy persons. Overall, indole, indole-3-acetate (IAA), and skatole accounted for 86% of the eight TMs measured. Significant correlations were found between seven TMs and 29 bacterial species.  Predicted multiple TM sources support the notion of a complex network of TM production and regulation. Further, the data suggest key roles for Collinsella aerofaciens and IAA, a metabolite reported to maintain intestinal homeostasis through enhanced barrier integrity and anti-inflammatory/antioxidant activities. These findings extend our understanding of TMs and their relationship to the microbial species that act as effectors and/or regulators in the healthy intestine and may lead to novel strategies designed to manipulate tryptophan metabolism to prevent disease and/or restore health to the dysbiotic gut.

14.
Nucleic Acids Res ; 52(4): e18, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153174

RESUMO

Homozygous duplications contribute to genetic disease by altering gene dosage or disrupting gene regulation and can be more deleterious to organismal biology than heterozygous duplications. Intragenic exonic duplications can result in loss-of-function (LoF) or gain-of-function (GoF) alleles that when homozygosed, i.e. brought to homozygous state at a locus by identity by descent or state, could potentially result in autosomal recessive (AR) rare disease traits. However, the detection and functional interpretation of homozygous duplications from exome sequencing data remains a challenge. We developed a framework algorithm, HMZDupFinder, that is designed to detect exonic homozygous duplications from exome sequencing (ES) data. The HMZDupFinder algorithm can efficiently process large datasets and accurately identifies small intragenic duplications, including those associated with rare disease traits. HMZDupFinder called 965 homozygous duplications with three or less exons from 8,707 ES with a recall rate of 70.9% and a precision of 16.1%. We experimentally confirmed 8/10 rare homozygous duplications. Pathogenicity assessment of these copy number variant alleles allowed clinical genomics contextualization for three homozygous duplications alleles, including two affecting known OMIM disease genes EDAR (MIM# 224900), TNNT1(MIM# 605355), and one variant in a novel candidate disease gene: PAAF1.


Assuntos
Variações do Número de Cópias de DNA , Sequenciamento do Exoma , Software , Humanos , Proteínas Adaptadoras de Transdução de Sinal , Homozigoto , Doenças Raras/genética
15.
PLoS Genet ; 19(11): e1011005, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37934770

RESUMO

BACKGROUND: Kinesin motor proteins transport intracellular cargo, including mRNA, proteins, and organelles. Pathogenic variants in kinesin-related genes have been implicated in neurodevelopmental disorders and skeletal dysplasias. We identified de novo, heterozygous variants in KIF5B, encoding a kinesin-1 subunit, in four individuals with osteogenesis imperfecta. The variants cluster within the highly conserved kinesin motor domain and are predicted to interfere with nucleotide binding, although the mechanistic consequences on cell signaling and function are unknown. METHODS: To understand the in vivo genetic mechanism of KIF5B variants, we modeled the p.Thr87Ile variant that was found in two patients in the C. elegans ortholog, unc-116, at the corresponding position (Thr90Ile) by CRISPR/Cas9 editing and performed functional analysis. Next, we studied the cellular and molecular consequences of the recurrent p.Thr87Ile variant by microscopy, RNA and protein analysis in NIH3T3 cells, primary human fibroblasts and bone biopsy. RESULTS: C. elegans heterozygous for the unc-116 Thr90Ile variant displayed abnormal body length and motility phenotypes that were suppressed by additional copies of the wild type allele, consistent with a dominant negative mechanism. Time-lapse imaging of GFP-tagged mitochondria showed defective mitochondria transport in unc-116 Thr90Ile neurons providing strong evidence for disrupted kinesin motor function. Microscopy studies in human cells showed dilated endoplasmic reticulum, multiple intracellular vacuoles, and abnormal distribution of the Golgi complex, supporting an intracellular trafficking defect. RNA sequencing, proteomic analysis, and bone immunohistochemistry demonstrated down regulation of the mTOR signaling pathway that was partially rescued with leucine supplementation in patient cells. CONCLUSION: We report dominant negative variants in the KIF5B kinesin motor domain in individuals with osteogenesis imperfecta. This study expands the spectrum of kinesin-related disorders and identifies dysregulated signaling targets for KIF5B in skeletal development.


Assuntos
Cinesinas , Osteogênese Imperfeita , Animais , Humanos , Camundongos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Transporte/genética , Regulação para Baixo , Cinesinas/genética , Cinesinas/metabolismo , Células NIH 3T3 , Proteômica , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
16.
bioRxiv ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37873367

RESUMO

Background: The duplication-triplication/inverted-duplication (DUP-TRP/INV-DUP) structure is a type of complex genomic rearrangement (CGR) hypothesized to result from replicative repair of DNA due to replication fork collapse. It is often mediated by a pair of inverted low-copy repeats (LCR) followed by iterative template switches resulting in at least two breakpoint junctions in cis . Although it has been identified as an important mutation signature of pathogenicity for genomic disorders and cancer genomes, its architecture remains unresolved and is predicted to display at least four structural variation (SV) haplotypes. Results: Here we studied the genomic architecture of DUP-TRP/INV-DUP by investigating the genomic DNA of 24 patients with neurodevelopmental disorders identified by array comparative genomic hybridization (aCGH) on whom we found evidence for the existence of 4 out of 4 predicted SV haplotypes. Using a combination of short-read genome sequencing (GS), long- read GS, optical genome mapping and StrandSeq the haplotype structure was resolved in 18 samples. This approach refined the point of template switching between inverted LCRs in 4 samples revealing a DNA segment of ∼2.2-5.5 kb of 100% nucleotide similarity. A prediction model was developed to infer the LCR used to mediate the non-allelic homology repair. Conclusions: These data provide experimental evidence supporting the hypothesis that inverted LCRs act as a recombinant substrate in replication-based repair mechanisms. Such inverted repeats are particularly relevant for formation of copy-number associated inversions, including the DUP-TRP/INV-DUP structures. Moreover, this type of CGR can result in multiple conformers which contributes to generate diverse SV haplotypes in susceptible loci .

17.
Res Sq ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37790445

RESUMO

Objective: Data from DNA genotyping via a 96-SNP panel in a study of 25,015 clinical samples were utilized for quality control and tracking of sample identity in a clinical sequencing network. The study aimed to demonstrate the value of both the precise SNP tracking and the utility of the panel for predicting the sex-by-genotype of the participants, to identify possible sample mix-ups. Results: Precise SNP tracking showed no sample swap errors within the clinical testing laboratories. In contrast, when comparing predicted sex-by-genotype to the provided sex on the test requisition, we identified 110 inconsistencies from 25,015 clinical samples (0.44%), that had occurred during sample collection or accessioning. The genetic sex predictions were confirmed using additional SNP sites in the sequencing data or high-density genotyping arrays. It was determined that discrepancies resulted from clerical errors, samples from transgender participants and stem cell or bone marrow transplant patients along with undetermined sample mix-ups.

18.
bioRxiv ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37398483

RESUMO

We describe the epidemiology and clinical characteristics of 29 patients with cancer and diarrhea in whom Enteroaggregative Escherichia coli (EAEC) was initially identified by GI BioFire panel multiplex. E. coli strains were successfully isolated from fecal cultures in 14 of 29 patients. Six of the 14 strains were identified as EAEC and 8 belonged to other diverse E. coli groups of unknown pathogenesis. We investigated these strains by their adherence to human intestinal organoids, cytotoxic responses, antibiotic resistance profile, full sequencing of their genomes, and annotation of their functional virulome. Interestingly, we discovered novel and enhanced adherence and aggregative patterns for several diarrheagenic pathotypes that were not previously seen when co-cultured with immortalized cell lines. EAEC isolates displayed exceptional adherence and aggregation to human colonoids compared not only to diverse GI E. coli , but also compared to prototype strains of other diarrheagenic E. coli . Some of the diverse E. coli strains that could not be classified as a conventional pathotype also showed an enhanced aggregative and cytotoxic response. Notably, we found a high carriage rate of antibiotic resistance genes in both EAEC strains and diverse GI E. coli isolates and observed a positive correlation between adherence to colonoids and the number of metal acquisition genes carried in both EAEC and the diverse E. coli strains. This work indicates that E. coli from cancer patients constitute strains of remarkable pathotypic and genomic divergence, including strains of unknown disease etiology with unique virulomes. Future studies will allow for the opportunity to re-define E. coli pathotypes with greater diagnostic accuracy and into more clinically relevant groupings.

19.
Pediatr Hematol Oncol ; 40(8): 719-738, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37366551

RESUMO

The potential of circulating tumor DNA (ctDNA) analysis to serve as a real-time "liquid biopsy" for children with central nervous system (CNS) and non-CNS solid tumors remains to be fully elucidated. We conducted a study to investigate the feasibility and potential clinical utility of ctDNA sequencing in pediatric patients enrolled on an institutional clinical genomics trial. A total of 240 patients had tumor DNA profiling performed during the study period. Plasma samples were collected at study enrollment from 217 patients and then longitudinally from a subset of patients. Successful cell-free DNA extraction and quantification occurred in 216 of 217 (99.5%) of these initial samples. Twenty-four patients were identified whose tumors harbored 30 unique variants that were potentially detectable on a commercially-available ctDNA panel. Twenty of these 30 mutations (67%) were successfully detected by next-generation sequencing in the ctDNA from at least one plasma sample. The rate of ctDNA mutation detection was higher in patients with non-CNS solid tumors (7/9, 78%) compared to those with CNS tumors (9/15, 60%). A higher ctDNA mutation detection rate was also observed in patients with metastatic disease (9/10, 90%) compared to non-metastatic disease (7/14, 50%), although tumor-specific variants were detected in a few patients in the absence of radiographic evidence of disease. This study illustrates the feasibility of incorporating longitudinal ctDNA analysis into the management of relapsed or refractory patients with childhood CNS or non-CNS solid tumors.


Assuntos
Neoplasias Encefálicas , DNA Tumoral Circulante , Humanos , Criança , DNA Tumoral Circulante/genética , Estudos de Viabilidade , Biomarcadores Tumorais , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Encefálicas/genética , Mutação
20.
Res Sq ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333115

RESUMO

Current understanding of viral dynamics of SARS-CoV-2 and host responses driving the pathogenic mechanisms in COVID-19 is rapidly evolving. Here, we conducted a longitudinal study to investigate gene expression patterns during acute SARS-CoV-2 illness. Cases included SARS-CoV-2 infected individuals with extremely high viral loads early in their illness, individuals having low SARS-CoV-2 viral loads early in their infection, and individuals testing negative for SARS-CoV-2. We could identify widespread transcriptional host responses to SARS-CoV-2 infection that were initially most strongly manifested in patients with extremely high initial viral loads, then attenuating within the patient over time as viral loads decreased. Genes correlated with SARS-CoV-2 viral load over time were similarly differentially expressed across independent datasets of SARS-CoV-2 infected lung and upper airway cells, from both in vitro systems and patient samples. We also generated expression data on the human nose organoid model during SARS-CoV-2 infection. The human nose organoid-generated host transcriptional response captured many aspects of responses observed in the above patient samples, while suggesting the existence of distinct host responses to SARS-CoV-2 depending on the cellular context, involving both epithelial and cellular immune responses. Our findings provide a catalog of SARS-CoV-2 host response genes changing over time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA