Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
bioRxiv ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38585787

RESUMO

The study of immunogens capable of eliciting broadly neutralizing antibodies (bnAbs) is crucial for the development of an HIV vaccine. To date, only cows, making use of their ultralong CDRH3 loops, have reliably elicited bnAbs following immunization with HIV Envelope trimers. Antibody responses to the CD4 binding site have been readily elicited by immunization of cows with a stabilized Env trimer of the BG505 strain and, with more difficulty, to the V2-apex region of Env with a cocktail of trimers. Here, we sought to determine whether the BG505 Env trimer could be engineered to generate new bnAb specificities in cows. Since the cow CD4 binding site bnAbs bind to monomeric BG505 gp120, we also sought to determine whether gp120 immunization alone might be sufficient to induce bnAbs. We found that engineering the CD4 binding site by mutation of a key binding residue of BG505 HIV Env resulted in a reduced bnAb response that took more immunizations to develop. Monoclonal antibodies isolated from one animal were directed to the V2-apex, suggesting a re-focusing of the bnAb response. Immunization with monomeric BG505 g120 generated no serum bnAb responses, indicating that the ultralong CDRH3 bnAbs are only elicited in the context of the trimer in the absence of many other less restrictive epitopes presented on monomeric gp120. The results support the notion of a hierarchy of epitopes on HIV Env and suggest that, even with the presence in the cow repertoire of ultralong CDRH3s, bnAb epitopes are relatively disfavored.

2.
ACS Pharmacol Transl Sci ; 7(3): 707-715, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38481696

RESUMO

The lipid nanoparticle (LNP) mRNA vaccine was first tested through clinic but suffered from relatively low RNA payloads and poor temperature stability. Our lab patented a protamine-coated particle approach for temperature-stabilizing DNA vaccines, translating this successfully to the clinic. In subsequent work, we have characterized RNA interaction and delivery by zinc oxide nanoparticles, filing a patent most recently entitled RNA-stabilizing nanoparticles, similarly utilizing protamine-coated zinc oxide nanoparticles for RNA. Here, we present this data for the first time. Briefly, ZnO, ZnO-protamine, and ZnO-protamine-RNA were characterized by size and zeta potential analyses and the RNA-loaded nanoparticles were visualized by transmission electron microscopy. UV spectroscopic analysis demonstrated up to 95-98% loading efficiency with protamine and approximately 75% loading efficiency with LL37, another cationic antiviral peptide. Elution of the RNA isolated from the particles afforded a calculation in three independent trials where RNA payloads ranged from 18 to 45 µg of RNA per 0.5 mg of coated particles. Circular dichroism (CD) analysis indicated that binding of RNA to ZnO NPs stabilized, enhancing the pattern with a clear dependence on the RNA:ZnO stoichiometry. Enhanced temperature stability was shown by differential scanning calorimetry (DSC), gel electrophoresis, and in vitro mRNA expression analysis. Using poly I:C RNA with a well-defined melting point (64.3 ± 0.32 °C), formation of the ZnO:RNA complex increased the RNA melting point (70.9 ± 0.62 °C). After refrigerated or room-temperature storage or incubation at 30, 40, or 50 °C, RNA comigration with the control RNA was recovered from all samples, exposed to either 14 or 100 nm ZnO, and coated with protamine. Furthermore, the ZnO-protamine-mRNA samples retained significantly higher expression activity when incubated at these elevated temperatures. Finally, the ZnO-protamine-mRNA was functionally active for in vitro translation, in cell extracts, and in cells for expression of GFP, luciferase, and COVID spike protein. These data support further preclinical development of ZnO-protamine-mRNA.

3.
bioRxiv ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38405899

RESUMO

The generation of broadly neutralizing antibodies (bnAbs) to specific HIV epitopes of the HIV Envelope (Env) is one of the cornerstones of HIV vaccine research. The current animal models we use have been unable to reliable produce a broadly neutralizing antibody response, with the exception of cows. Cows have rapidly and reliably produced a CD4 binding site response by homologous prime and boosting with a native-like Env trimer. In small animal models other engineered immunogens previously have been able to focus antibody responses to the bnAb V2-apex region of Env. Here, we immunized two groups of cows (n=4) with two regiments of V2-apex focusing immunogens to investigate whether antibody responses could be directed to the V2-apex on Env. Group 1 were immunized with chimpanzee simian immunodeficiency virus (SIV)-Env trimer that shares its V2-apex with HIV, followed by immunization with C108, a V2-apex focusing immunogen, and finally boosted with a cross-clade native-like trimer cocktail. Group 2 were immunized with HIV C108 Env trimer followed by the same HIV trimer cocktail as Group 1. Longitudinal serum analysis showed that one cow in each group developed serum neutralizing antibody responses to the V2-apex. Eight and 11 bnAbs were isolated from Group 1 and Group 2 cows respectively. The best bnAbs had both medium breadth and potency. Potent and broad responses developed later than previous CD4bs cow bnAbs and required several different immunogens. All isolated bnAbs were derived from the ultralong CDRH3 repertoire. The finding that cow antibodies can target multiple broadly neutralizing epitopes on the HIV surface reveals important insight into the generation of immunogens and testing in the cow animal model. The exclusive isolation of ultralong CDRH3 bnAbs, despite only comprising a small percent of the cow repertoire, suggests these antibodies outcompete the long and short CDRH3 antibodies during the bnAb response.

4.
Vaccines (Basel) ; 11(12)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38140269

RESUMO

Natural planned exposure (NPE) remains one of the most common methods in swine herds to boost lactogenic immunity against rotaviruses. However, the efficacy of NPE protocols in generating lactogenic immunity has not been investigated before. A longitudinal study was conducted to investigate the dynamics of genotype-specific antibody responses to different doses (3, 2 and 1) of Rotavirus A (RVA) NPE (genotypes G4, G5, P[7] and P[23]) in gilts and the transfer of lactogenic immunity to their piglets. Group 1 gilts received three doses of NPE at 5, 4 and 3 weeks pre-farrow (WPF), group 2 received two doses at 5 and 3 WPF, group 3 received one dose at 5 WPF, and group 4 received no NPE (control group). VP7 (G4 and G5) and truncated VP4* (P[7] and P[23]) antigens of RVA were expressed in mammalian and bacterial expression systems, respectively, and used to optimize indirect ELISAs to determine antibody levels against RVA in gilts and piglets. In day-0 colostrum samples, group 1 had significantly higher IgG titers compared to the control group for all four antigens, and either significantly or numerically higher IgG titers than groups 2 and 3. Group 1 also had significantly higher colostrum IgA levels than the control group for all antigens (except G4), and either significantly or numerically higher IgA levels compared to groups 2 and 3. In piglet serum, group 1 piglets had higher IgG titers for all four antigens at day 0 than the other groups. Importantly, RVA NPE stimulated antibodies in all groups regardless of the treatment doses and prevented G4, G5, P[7] and P[23] RVA fecal shedding prior to weaning in piglets in the absence of viral challenge. The G11 and P[34] RVA genotypes detected from pre-weaning piglets differed at multiple amino acid positions with parent NPE strains. In conclusion, the results of this study suggest that the group 1 NPE regimen (three doses of NPE) resulted in the highest anti-RVA antibody (IgG and IgA) levels in the colostrum/milk, and the highest IgG levels in piglet serum.

6.
Proc Natl Acad Sci U S A ; 120(39): e2303455120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722054

RESUMO

Cows produce antibodies with a disulfide-bonded antigen-binding domain embedded within ultralong heavy chain third complementarity determining regions. This "knob" domain is analogous to natural cysteine-rich peptides such as knottins in that it is small and stable but can accommodate diverse loops and disulfide bonding patterns. We immunized cattle with SARS-CoV-2 spike and found ultralong CDR H3 antibodies that could neutralize several viral variants at picomolar IC50 potencies in vitro and could protect from disease in vivo. The independent CDR H3 peptide knobs were expressed and maintained the properties of the parent antibodies. The knob interaction with SARS-CoV-2 spike was revealed by electron microscopy, X-ray crystallography, NMR spectroscopy, and mass spectrometry and established ultralong CDR H3-derived knobs as the smallest known recombinant independent antigen-binding fragment. Unlike other vertebrate antibody fragments, these knobs are not reliant on the immunoglobulin domain and have potential as a new class of therapeutics.


Assuntos
COVID-19 , SARS-CoV-2 , Feminino , Animais , Bovinos , Anticorpos , Fragmentos Fab das Imunoglobulinas/genética , Dissulfetos
7.
Front Vet Sci ; 10: 1208275, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404778

RESUMO

Introduction: African swine fever virus (ASFV) is a pathogen of great economic importance given that continues to threaten the pork industry worldwide, but there is no safe vaccine or treatment available. Development of a vaccine is feasible as immunization of pigs with some live attenuated ASFV vaccine candidates can confer protection, but safety concerns and virus scalability are challenges that must to be addressed. Identification of protective ASFV antigens is needed to inform the development of efficacious subunit vaccines. Methods: In this study, replication-incompetent adenovirus-vectored multicistronic ASFV antigen expression constructs that covered nearly 100% of the ASFV proteome were generated and validated using ASFV convalescent serum. Swine were immunized with a cocktail of the expression constructs, designated Ad5-ASFV, alone or formulated with either Montanide ISA-201™ (ASFV-ISA-201) or BioMize® adjuvant (ASFV-BioMize). Results: These constructs primed strong B cell responses as judged by anti-pp62-specific IgG responses. Notably, the Ad5-ASFV and the Ad5-ASFV ISA-201, but not the Ad5-ASFV BioMize®, immunogens primed significantly (p < 0.0001) higher anti-pp62-specific IgG responses compared with Ad5-Luciferase formulated with Montanide ISA-201™ adjuvant (Luc-ISA-201). The anti-pp62-specific IgG responses underwent significant (p < 0.0001) recall in all the vaccinees after boosting and the induced antibodies strongly recognized ASFV (Georgia 2007/1)-infected primary swine cells. However, following challenge by contact spreaders, only one pig nearly immunized with the Ad5-ASFV cocktail survived. The survivor had no typical clinical symptoms, but had viral loads and lesions consistent with chronic ASF. Discussion: Besides the limited sample size used, the outcome suggests that in vivo antigen expression, but not the antigen content, might be the limitation of this immunization approach as the replication-incompetent adenovirus does not amplify in vivo to effectively prime and expand protective immunity or directly mimic the gene transcription mechanisms of attenuated ASFV. Addressing the in vivo antigen delivery limitations may yield promising outcomes.

8.
Viruses ; 14(10)2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36298806

RESUMO

A longitudinal study was conducted to investigate the dynamics of genotype-specific (G6 and P[5]) antibody response to different doses (3, 2 and 1) of rotavirus C (RVC) natural planned exposure (NPE) in gilt serum, colostrum/milk and piglet serum, and compare with antibody response to rotavirus A NPE (RVA genotypes G4, G5, P[7] and P[23]). G6 and P[5] antigens of RVC were expressed in mammalian and bacterial cells, and used to develop individual indirect ELISAs. For both antigens, group 1 with 3 doses of NPE resulted in significantly higher IgG and IgA levels in colostrum compared to other groups. In piglet serum, group 1 P[5] IgG levels were significantly higher than other study groups at day 0 and 7. Piglet serum had higher IgA levels for group 1 piglets compared to other groups for both antigens. A comparison of colostrum antibody levels to rotavirus A (RVA) and RVC revealed that colostrum RVC IgG and IgA titers were lower than RVA titers irrespective of the G and P-type. Next generation sequencing (NGS) detected same RVC genotypes (G6 and P[5]) circulating in the piglet population under the window of lactogenic immunity. We conclude that the low RVC load in NPE material (real-time PCR Ct-values 32.55, 29.32 and 30.30) failed to induce sufficient maternal immunity in gilts (low colostrum RVC antibody levels) and passively prevent piglets from natural RVC infection in the farrowing room. To the best of our knowledge, this is the first study comparing differences in antibody response to porcine RVA and RVC in a commercial setting.


Assuntos
Infecções por Rotavirus , Rotavirus , Doenças dos Suínos , Animais , Suínos , Feminino , Rotavirus/genética , Infecções por Rotavirus/epidemiologia , Formação de Anticorpos , Estudos Longitudinais , Imunoglobulina G , Sus scrofa , Imunoglobulina A
9.
Pathogens ; 11(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36297136

RESUMO

Rotaviruses (RVs) are endemic in swine populations, and all swine herds certainly have a history of RV infection and circulation. Rotavirus A (RVA) and C (RVC) are the most common among all RV species reported in swine. RVA was considered most prevalent and pathogenic in swine; however, RVC has been emerging as a significant cause of enteritis in newborn piglets. RV eradication from swine herds is not practically achievable, hence producers' mainly focus on minimizing the production impact of RV infections by reducing mortality and diarrhea. Since no intra-uterine passage of immunoglobulins occur in swine during gestation, newborn piglets are highly susceptible to RV infection at birth. Boosting lactogenic immunity in gilts by using vaccines and natural planned exposure (NPE) is currently the only way to prevent RV infections in piglets. RVs are highly diverse and multiple RV species have been reported from swine, which also contributes to the difficulties in preventing RV diarrhea in swine herds. Human RV-gut microbiome studies support a link between microbiome composition and oral RV immunogenicity. Such information is completely lacking for RVs in swine. It is not known how RV infection affects the functionality or structure of gut microbiome in swine. In this review, we provide a detailed overview of genotypic diversity of swine RVs, host-ranges, innate and adaptive immune responses to RVs, homotypic and heterotypic immunity to RVs, current methods used for RV management in swine herds, role of maternal immunity in piglet protection, and prospects of investigating swine gut microbiota in providing immunity against rotaviruses.

10.
Front Vet Sci ; 9: 921481, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711803

RESUMO

African Swine Fever Virus (ASFV) poses a serious threat to the pork industry worldwide; however, there is no safe vaccine or treatment available. The development of an efficacious subunit vaccine will require the identification of protective antigens. The ASFV pp220 polyprotein is essential for virus structural integrity. This polyprotein is processed to generate p5, p34, p14, p37, and p150 individual proteins. Immunization of pigs with a cocktail of adenoviruses expressing the proteins induced significant IgG, IFN-γ-secreting cells, and cytotoxic T lymphocyte responses. Four predicted SLA-I binding nonamer peptides, namely p34161-169, p37859-867, p1501363-1371, and p1501463-1471, recalled strong IFN-γ+ PBMC and splenocyte responses. Notably, peptide p34161-169 was recognized by PBMCs isolated from 7/10 pigs and by splenocytes isolated from 8/10 pigs. Peptides p37859-867 and p1501363-1371 stimulated recall IFN-γ+ responses in PBMCs and splenocytes isolated from 8/10 pigs, whereas peptide p1501463-1471 recalled responses in PBMCs and splenocytes isolated from 7/10 to 9/10 pigs, respectively. The results demonstrate that the pp220 polyprotein contains multiple epitopes that induce robust immune responses in pigs. Importantly, these epitopes are 100% conserved among different ASFV genotypes and were predicted to bind multiple SLA-I alleles. The outcomes suggest that pp220 is a promising candidate for inclusion in a prototype subunit vaccine.

11.
J Immunol ; 206(8): 1709-1718, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33762324

RESUMO

Studies of immune responses elicited by bovine viral diarrhea virus (BVDV) vaccines have primarily focused on the characterization of neutralizing B cell and CD4+ T cell epitopes. Despite the availability of commercial vaccines for decades, BVDV prevalence in cattle has remained largely unaffected. There is limited knowledge regarding the role of BVDV-specific CD8+ T cells in immune protection, and indirect evidence suggests that they play a crucial role during BVDV infection. In this study, the presence of BVDV-specific CD8+ T cells that are highly cross-reactive in cattle was demonstrated. Most importantly, novel potent IFN-γ-inducing CD8+ T cell epitopes were identified from different regions of BVDV polyprotein. Eight CD8+ T cell epitopes were identified from the following structural BVDV Ags: Erns, E1, and E2 glycoproteins. In addition, from nonstructural BVDV Ags Npro, NS2-3, NS4A-B, and NS5A-B, 20 CD8+ T cell epitopes were identified. The majority of these IFN-γ-inducing CD8+ T cell epitopes were found to be highly conserved among more than 200 strains from BVDV-1 and -2 genotypes. These conserved epitopes were also validated as cross-reactive because they induced high recall IFN-γ+CD8+ T cell responses ex vivo in purified bovine CD8+ T cells isolated from BVDV-1- and -2-immunized cattle. Altogether, 28 bovine MHC class I-binding epitopes were identified from key BVDV Ags that can elicit broadly reactive CD8+ T cells against diverse BVDV strains. The data presented in this study will lay the groundwork for the development of a contemporary CD8+ T cell-based BVDV vaccine capable of addressing BVDV heterogeneity more effectively than current vaccines.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/imunologia , Linfócitos T CD8-Positivos/imunologia , Vírus da Diarreia Viral Bovina/fisiologia , Epitopos de Linfócito T/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Vacinas Virais/imunologia , Animais , Bovinos , Células Cultivadas , Sequência Conservada/genética , Reações Cruzadas , Epitopos de Linfócito T/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Interferon gama/metabolismo , Ligação Proteica , Proteínas do Envelope Viral/genética , Proteínas não Estruturais Virais/genética
12.
Vaccines (Basel) ; 9(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451136

RESUMO

The bovine respiratory disease complex (BRDC) remains a major problem for both beef and dairy cattle industries worldwide. BRDC frequently involves an initial viral respiratory infection resulting in immunosuppression, which creates a favorable condition for fatal secondary bacterial infection. Current polyvalent modified live vaccines against bovine herpesvirus type 1(BoHV-1) and bovine viral diarrhea virus (BVDV) have limitations concerning their safety and efficacy. To address these shortcomings and safety issues, we have constructed a quadruple gene mutated BoHV-1 vaccine vector (BoHV-1 QMV), which expresses BVDV type 2, chimeric E2 and Flag-tagged Erns-fused with bovine granulocyte monocyte colony-stimulating factor (GM-CSF) designated here as QMV-BVD2*. Here we compared the safety, immunogenicity, and protective efficacy of QMV-BVD2* vaccination in calves against BVDV-2 with Zoetis Bovi-shield Gold 3 trivalent (BoHV-1, BVDV types 1 and 2) vaccine. The QMV-BVD2* prototype subunit vaccine induced the BoHV-1 and BVDV-2 neutralizing antibody responses along with BVDV-1 and -2 cross-reactive cellular immune responses. Moreover, after a virulent BVDV-2 challenge, the QMV-BVD2* prototype subunit vaccine conferred a more rapid recall BVDV-2-specific neutralizing antibody response and considerably better recall BVDV types 1 and 2-cross protective cellular immune responses than that of the Zoetis Bovi-shield Gold 3.

13.
Front Immunol ; 11: 589537, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281819

RESUMO

Bovine Viral Diarrhea Virus (BVDV) is an important pathogen that plays a significant role in initiating Bovine Respiratory Disease Complex (BRDC) in cattle. The disease causes multi-billion dollar losses globally due to high calf mortality and increased morbidity leading to heavy use of antibiotics. Current commercial vaccines provide limited cross-protection with several drawbacks such as safety, immunosuppression, potential reversion to virulence, and induction of neonatal pancytopenia. This study evaluates two prototype vaccines containing multiple rationally designed recombinant mosaic BVDV antigens for their potential to confer cross-protection against diverse BVDV strains. Genes encoding three novel mosaic antigens, designated E2123, NS2-31, and NS2-32, were designed in silico and expressed in mammalian cells for the formulation of a prototype protein-based vaccine. The mosaic antigens contain highly conserved protective epitopes from BVDV-1a, -1b, and -2, and included unique neutralizing epitopes from disparate strains to broaden coverage. We tested immunogenicity and protective efficacy of Expi293TM-expressed mosaic antigens (293F-E2123, 293F-NS2-31, and 293F-NS2-32), and baculovirus-expressed E2123 (Bac-E2123) mosaic antigen in calves. The Expi293TM-expressed antigen cocktail induced robust BVDV-specific cross-reactive IFN-γ responses, broadly neutralizing antibodies, and following challenge with a BVDV-1b strain, the calves had significantly (p < 0.05) reduced viremia and clinical BVD disease compared to the calves vaccinated with a commercial killed vaccine. The Bac-E2123 antigen was not as effective as the Expi293TM-expressed antigen cocktail, but it protected calves from BVD disease better than the commercial killed vaccine. The findings support feasibility for development of a broadly protective subunit BVDV vaccine for safe and effective management of BRD.


Assuntos
Antígenos Virais/imunologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/terapia , Bovinos/imunologia , Vírus da Diarreia Viral Bovina/imunologia , Vacinas Virais/administração & dosagem , Animais , Antígenos Virais/genética , Doença das Mucosas por Vírus da Diarreia Viral Bovina/imunologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Epitopos/imunologia
14.
Pathogens ; 9(3)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121082

RESUMO

: African swine fever (ASF) is a viral disease of domestic and wild suids for which there is currently no vaccine or treatment available. The recent spread of ASF virus (ASFV) through Europe and Asia is causing enormous economic and animal losses. Unfortunately, the measures taken so far are insufficient and an effective vaccine against ASFV needs to be urgently developed. We hypothesized that immunization with a cocktail of thirty-five rationally selected antigens would improve the protective efficacy of subunit vaccine prototypes given that the combination of fewer immunogenic antigens (between 2 and 22) has failed to elicit protective efficacy. To this end, immunogenicity and efficacy of thirty-five adenovirus-vectored ASFV antigens were evaluated in wild boar. The treated animals were divided into different groups to test the use of BioMize adjuvant and different inoculation strategies. Forty-eight days after priming, the nine treated and two control wild boar were challenged with the virulent ASFV Arm07 isolate. All animals showed clinical signs and pathological findings consistent with ASF. This lack of protection is in line with other studies with subunit vaccine prototypes, demonstrating that there is still much room for improvement to obtain an effective subunit ASFV vaccine.

15.
Front Vet Sci ; 7: 84, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32154279

RESUMO

African swine fever is a major concern due to its negative impact on pork production in affected regions. Due to lack of treatment and a safe vaccine, it has been extremely difficult to control this devastating disease. The mechanisms of virus entry, replication within the host cells, immune evasion mechanisms, correlates of protection, and antigens that are effective at inducing host immune response, are now gradually being identified. This information is required for rational design of novel disease control strategies. Pigs which recover from infection with less virulent ASFV isolates can be protected from challenge with related virulent isolates. This strongly indicates that an effective vaccine against ASFV could be developed. Nonetheless, it is clear that effective immunity depends on both antibody and cellular immune responses. This review paper summarizes the key studies that have evaluated three major approaches for development of African Swine Fever virus vaccines. Recent immunization strategies have involved development and in vivo evaluation of live attenuated virus, and recombinant protein- and DNA-based and virus-vectored subunit vaccine candidates. The limitations of challenge models for evaluating ASFV vaccine candidates are also discussed.

16.
PLoS Pathog ; 15(11): e1008128, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31756216

RESUMO

Feeding and transmission of tick-borne disease (TBD) agents by ticks are facilitated by tick saliva proteins (TSP). Thus, defining functional roles of TSPs in tick evasion is expected to reveal potential targets in tick-antigen based vaccines to prevent TBD infections. This study describes two types of Amblyomma americanum TSPs: those that are similar to LPS activate macrophage (MΦ) to express pro-inflammation (PI) markers and another set that suppresses PI marker expression by activated MΦ. We show that similar to LPS, three recombinant (r) A. americanum insulin-like growth factor binding-related proteins (rAamIGFBP-rP1, rAamIGFBP-rP6S, and rAamIGFBP-rP6L), hereafter designated as PI-rTSPs, stimulated both PBMC -derived MΦ and mice RAW 267.4 MΦ to express PI co-stimulatory markers, CD40, CD80, and CD86 and cytokines, TNFα, IL-1, and IL-6. In contrast, two A. americanum tick saliva serine protease inhibitors (serpins), AAS27 and AAS41, hereafter designated as anti-inflammatory (AI) rTSPs, on their own did not affect MΦ function or suppress expression of PI markers, but enhanced expression of AI cytokines (IL-10 and TGFß) in MΦ that were pre-activated by LPS or PI-rTSPs. Mice paw edema test demonstrated that in vitro validated PI- and AI-rTSPs are functional in vivo since injection of HEK293-expressed PI-rTSPs (individually or as a cocktail) induced edema comparable to carrageenan-induced edema and was characterized by upregulation of CD40, CD80, CD86, TNF-α, IL-1, IL-6, and chemokines: CXCL1, CCL2, CCL3, CCL5, and CCL11, whereas the AI-rTSPs (individually and cocktail) were suppressive. We propose that the tick may utilize countervailing PI and AI TSPs to regulate evasion of host immune defenses whereby TSPs such as rAamIGFBP-rPs activate host immune cells and proteins such as AAS27 and AAS41 suppress the activated immune cells.


Assuntos
Anti-Inflamatórios/metabolismo , Proteínas de Artrópodes/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/parasitologia , Saliva/metabolismo , Infestações por Carrapato/parasitologia , Carrapatos/patogenicidade , Animais , Proteínas de Artrópodes/genética , Feminino , Células HEK293 , Interações Hospedeiro-Parasita , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Infestações por Carrapato/imunologia , Infestações por Carrapato/metabolismo
17.
Immunohorizons ; 3(10): 478-487, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619454

RESUMO

Ab diversity in most vertebrates results from the assortment of amino acid side chains on CDR loops formed through V(D)J recombination. Cows (Bos taurus) have a low combinatorial diversity potential because of a small number of highly homologous V, D, and J gene segments. Despite this, a subset of the Ab repertoire (∼10%) contains exceptionally long CDR H chain (HC) 3 (H3) regions with a rich diversity of cysteines and disulfide-bonded loops that diversify through a single V-D-J recombination event followed by massive somatic hypermutation. However, the much larger portion of the repertoire, encoding shorter CDR H3s, has not been examined in detail. Analysis of germline gene segments reveals noncanonical cysteines in the HC V regions and significant cysteine content in the HC D regions. Deep sequencing analysis of naturally occurring shorter CDR H3 (<40 aa) Ab genes shows that HC V and HC D regions preferentially combine to form a functional gene with an even number of total cysteines in the final V region, suggesting that disulfide bonds contribute to diversity not only in ultralong CDR H3 bovine Abs but in shorter CDR H3 bovine Abs as well. In addition to germline "hard-coded" cysteines, the bovine Ab repertoire can produce additional cysteine codons through somatic hypermutation, further diversifying the repertoire. Given the limited combinatorial diversity at the bovine Ig loci, this helps to explain how diversity is created in shorter CDR H3 Abs and potentially provides novel structural paratopes in bovine Ab combining sites.


Assuntos
Anticorpos/genética , Diversidade de Anticorpos/genética , Cisteína/genética , Animais , Bovinos , Regiões Determinantes de Complementaridade/genética , Cadeias Pesadas de Imunoglobulinas/genética
18.
Virology ; 536: 1-15, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31377598

RESUMO

Prevention of Epstein-Barr virus (EBV) infection has focused on generating neutralizing antibodies (nAbs) targeting the major envelope glycoprotein gp350/220 (gp350). In this study, we generated 23 hybridomas producing gp350-specific antibodies. We compared the candidate gp350-specific antibodies to the well-characterized nAb 72A1 by: (1) testing their ability to detect gp350 using enzyme-linked immunosorbent assay, flow cytometry, and immunoblot; (2) sequencing their heavy and light chain complementarity-determining regions (CDRs); (3) measuring the ability of each monoclonal antibody (mAb) to neutralize EBV infection in vitro; and (4) mapping the gp350 amino acids bound by the mAbs using competitive cell and linear peptide binding assays. We performed sequence analysis to identify 15 mAbs with CDR regions unique from those of murine 72A1 (m72A1). We observed antigen binding competition between biotinylated m72A1, serially diluted unlabeled gp350 nAbs (HB1, HB5, HB11, HB20), and our recently humanized 72A1, but not gp350 non-nAb (HB17) or anti-KSHV gH/gL antibody.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Herpesvirus Humano 4/efeitos dos fármacos , Epitopos Imunodominantes/química , Proteínas da Matriz Viral/química , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/isolamento & purificação , Anticorpos Antivirais/farmacologia , Linfócitos B/imunologia , Linfócitos B/virologia , Sítios de Ligação de Anticorpos , Ligação Competitiva , Linhagem Celular Tumoral , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/imunologia , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/imunologia , Células Epiteliais/virologia , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/prevenção & controle , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/imunologia , Humanos , Hibridomas/química , Hibridomas/imunologia , Epitopos Imunodominantes/imunologia , Camundongos , Ligação Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas da Matriz Viral/imunologia
19.
Vet Microbiol ; 235: 10-20, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31282366

RESUMO

African Swine Fever Virus (ASFV) causes a hemorrhagic disease in swine and wild boars with a fatality rate close to 100%. Less virulent strains cause subchronic or chronic forms of the disease. The virus is endemic in sub-Saharan Africa and an outbreak in Georgia in 2007 spread to Armenia, Russia, Ukraine, Belarus, Poland, Lithuania, and Latvia. In August 2018, there was an outbreak in China and in April 2019, ASFV was reported in Vietnam and Cambodia. Since no vaccine or treatment exists, a vaccine is needed to safeguard the swine industry. Previously, we evaluated immunogenicity of two adenovirus-vectored cocktails containing ASFV antigens and demonstrated induction of unprecedented robust antibody and T cell responses, including cytotoxic T lymphocytes. In the present study, we evaluated protective efficacy of both cocktails by intranasal challenge of pigs with ASFV-Georgia 2007/1. A nine antigen cocktail-(I) formulated in BioMize adjuvant induced strong IgG responses, but when challenged, the vaccinees had more severe reaction relative to the controls. A seven antigen cocktail-(II) was evaluated using two adjuvants: BioMize and ZTS-01. The BioMize formulation induced stronger antibody responses, but 8/10 vaccinees and 4/5 controls succumbed to the disease or reached experimental endpoint at 17 days post-challenge. In contrast, the ZTS-01 formulation induced weaker antibody responses, but 4/9 pigs succumbed to the disease while the 5 survivors exhibited low clinical scores and no viremia at 17 days post-challenge, whereas 4/5 controls succumbed to the disease or reached experimental endpoint. Overall, none of the immunogens conferred statistically significant protection.


Assuntos
Febre Suína Africana/prevenção & controle , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Vacinas Virais/imunologia , Adenoviridae , Administração Intranasal , Febre Suína Africana/imunologia , Vírus da Febre Suína Africana , Animais , Antígenos Virais/genética , Imunoglobulina G/sangue , Suínos , Linfócitos T Citotóxicos/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Vacinas Virais/genética , Viremia , Virulência
20.
Vaccine ; 37(9): 1142-1150, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30691984

RESUMO

Prescottella equi (formerly Rhodococcus equi) is a facultative intracellular bacterial pathogen that causes severe pneumonia in foals 1-6 months of age, whereas adult horses are highly resistant to infection. We have shown that vaccinating pregnant mares against the conserved surface polysaccharide capsule, ß-1 → 6-linked poly-N-acetyl glucosamine (PNAG), elicits opsonic killing antibody that transfers via colostrum to foals and protects them against experimental infection with virulent. R. equi. We hypothesized that equine IgG1 might be more important than IgG4/7 for mediating protection against R. equi infection in foals. To test this hypothesis, we compared complement component 1 (C1) deposition and polymorphonuclear cell-mediated opsonophagocytic killing (OPK) mediated by IgG1 or IgG4/7 enriched from either PNAG hyperimmune plasma (HIP) or standard plasma. Subclasses IgG1 and IgG4/7 from PNAG HIP and standard plasma were precipitated onto a diethylaminoethyl ion exchange column, then further enriched using a protein G Sepharose column. We determined C1 deposition by enzyme-linked immunosorbent assay (ELISA) and estimated OPK by quantitative microbiologic culture. Anti-PNAG IgG1 deposited significantly (P < 0.05) more C1 onto PNAG than did IgG4/7 from PNAG HIP or subclasses IgG1 and IgG4/7 from standard plasma. In addition, IgG1 from PNAG HIP mediated significantly (P < 0.05) greater OPK than IgG4/7 from PNAG HIP or IgG1 and IgG4/7 from standard plasma. Our findings indicate that anti-PNAG IgG1 is a correlate of protection against R. equi in foals, which has important implications for understanding the immunopathogenesis of R. equi pneumonia, and as a tool for assessing vaccine efficacy and effectiveness when challenge is not feasible.


Assuntos
Acetilglucosamina/imunologia , Infecções por Actinomycetales/veterinária , Anticorpos Antibacterianos/sangue , Complemento C1/imunologia , Imunoglobulina G/sangue , Fagocitose , Rhodococcus equi/imunologia , Infecções por Actinomycetales/imunologia , Infecções por Actinomycetales/prevenção & controle , Fatores Etários , Animais , Animais Recém-Nascidos , Anticorpos Antibacterianos/classificação , Anticorpos Antibacterianos/imunologia , Doenças dos Cavalos/imunologia , Doenças dos Cavalos/prevenção & controle , Cavalos/imunologia , Imunoglobulina G/classificação , Proteínas Opsonizantes , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA