Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(7): 5421-5436, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38546708

RESUMO

A series of novel 5-aminothiazole-based ligands for prolyl oligopeptidase (PREP) comprise selective, potent modulators of the protein-protein interaction (PPI)-mediated functions of PREP, although they are only weak inhibitors of the proteolytic activity of PREP. The disconnected structure-activity relationships are significantly more pronounced for the 5-aminothiazole-based ligands than for the earlier published 5-aminooxazole-based ligands. Furthermore, the stability of the 5-aminothiazole scaffold allowed exploration of wider substitution patterns than that was possible with the 5-aminooxazole scaffold. The intriguing structure-activity relationships for the modulation of the proteolytic activity and PPI-derived functions of PREP were elaborated by presenting a new binding site for PPI modulating PREP ligands, which was initially discovered using molecular modeling and later confirmed through point mutation studies. Our results suggest that this new binding site on PREP is clearly more important than the active site of PREP for the modulation of its PPI-mediated functions.


Assuntos
Prolil Oligopeptidases , Serina Endopeptidases , Tiazóis , Prolil Oligopeptidases/metabolismo , Serina Endopeptidases/metabolismo , Ligantes , Sítios de Ligação
2.
Neurobiol Aging ; 129: 62-71, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37271045

RESUMO

Increasing evidence suggests that the gut-brain axis plays a crucial role in Parkinson's disease (PD). The abnormal accumulation of aggregated alpha-synuclein (aSyn) in the brain is a key pathological feature of PD. Intracerebral 6-hydroxydopamine (6-OHDA) is a widely used dopaminergic lesion model of PD. It exerts no aSyn pathology in the brain, but changes in the gut have not been assessed. Here, 6-OHDA was administered unilaterally either to the rat medial forebrain bundle (MFB) or striatum. Increased levels of glial fibrillary acidic protein in the ileum and colon were detected at 5 weeks postlesion. 6-OHDA decreased the Zonula occludens protein 1 barrier integrity score, suggesting increased colonic permeability. The total aSyn and Ser129 phosphorylated aSyn levels were elevated in the colon after the MFB lesion. Both lesions generally increased the total aSyn, pS129 aSyn, and ionized calcium-binding adapter molecule 1 (Iba1) levels in the lesioned striatum. In conclusion, 6-OHDA-induced nigrostriatal dopaminergic damage leads to increased aSyn levels and glial cell activation particularly in the colon, suggesting that the gut-brain axis interactions in PD are bidirectional and the detrimental process may start in the brain.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Ratos , Animais , Oxidopamina , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Encéfalo/metabolismo , Dopamina/metabolismo , Colo/metabolismo
3.
J Med Chem ; 66(11): 7475-7496, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37248563

RESUMO

Prolyl oligopeptidase (PREP) is a widely distributed serine protease in the human body cleaving proline-containing peptides; however, recent studies suggest that its effects on pathogenic processes underlying neurodegeneration are derived from direct protein-protein interactions (PPIs) and not from its regulation of certain neuropeptide levels. We discovered novel nonpeptidic oxazole-based PREP inhibitors, which deviate from the known structure-activity relationship for PREP inhibitors. These new compounds are effective modulators of the PPIs of PREP, reducing α-synuclein (αSyn) dimerization and enhancing protein phosphatase 2A activity in a concentration-response manner, as well as reducing reactive oxygen species production. From the best performing oxazoles, HUP-55 was selected for in vivo studies. Its brain penetration was evaluated, and it was tested in αSyn virus vector-based and αSyn transgenic mouse models of Parkinson's disease, where it restored motor impairment and reduced levels of oligomerized αSyn in the striatum and substantia nigra.


Assuntos
Doença de Parkinson , Prolil Oligopeptidases , Animais , Humanos , Camundongos , alfa-Sinucleína/metabolismo , Ligantes , Camundongos Transgênicos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Serina Endopeptidases/metabolismo , Oxazóis/química , Oxazóis/farmacologia
4.
Sci Transl Med ; 15(691): eabq2915, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37043557

RESUMO

Tauopathies are neurodegenerative diseases that are characterized by accumulation of hyperphosphorylated tau protein, higher-order aggregates, and tau filaments. Protein phosphatase 2A (PP2A) is a major tau dephosphorylating phosphatase, and a decrease in its activity has been demonstrated in tauopathies, including Alzheimer's disease. Prolyl oligopeptidase is a serine protease that is associated with neurodegeneration, and its inhibition normalizes PP2A activity without toxicity under pathological conditions. Here, we assessed whether prolyl oligopeptidase inhibition could protect against tau-mediated toxicity in cellular models in vitro and in the PS19 transgenic mouse model of tauopathy carrying the human tau-P301S mutation. We show that inhibition of prolyl oligopeptidase with the inhibitor KYP-2047 reduced tau aggregation in tau-transfected HEK-293 cells and N2A cells as well as in human iPSC-derived neurons carrying either the P301L or tau-A152T mutation. Treatment with KYP-2047 resulted in increased PP2A activity and activation of autophagic flux in HEK-293 cells and N2A cells and in patient-derived iNeurons, as indicated by changes in autophagosome and autophagy receptor markers; this contributed to clearance of insoluble tau. Furthermore, treatment of PS19 transgenic mice for 1 month with KYP-2047 reduced tau burden in the brain and cerebrospinal fluid and slowed cognitive decline according to several behavioral tests. In addition, a reduction in an oxidative stress marker was seen in mouse brains after KYP-2047 treatment. This study suggests that inhibition of prolyl oligopeptidase could help to ameliorate tau-dependent neurodegeneration.


Assuntos
Prolil Oligopeptidases , Tauopatias , Camundongos , Humanos , Animais , Células HEK293 , Tauopatias/metabolismo , Proteínas tau/metabolismo , Camundongos Transgênicos , Serina Endopeptidases/metabolismo , Inibidores Enzimáticos , Modelos Animais de Doenças
5.
Neuropharmacology ; 218: 109213, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35964686

RESUMO

Parkinson's disease (PD) is characterized by degeneration of nigrostriatal dopaminergic neurons and accumulation of α-synuclein (αSyn) as Lewy bodies. Currently, there is no disease-modifying therapy available for PD. We have shown that a small molecular inhibitor for prolyl oligopeptidase (PREP), KYP-2047, relieves αSyn-induced toxicity in various PD models by inducing autophagy and preventing αSyn aggregation. In this study, we wanted to study the effects of PREP inhibition on different αSyn species by using cell culture and in vivo models. We used Neuro2A cells with transient αSyn overexpression and oxidative stress or proteasomal inhibition-induced αSyn aggregation to assess the effect of KYP-2047 on soluble αSyn oligomers and on cell viability. Here, the levels of soluble αSyn were measured by using ELISA, and the impact of KYP-2047 was compared to anle138b, nilotinib and deferiprone. To evaluate the effect of KYP-2047 on αSyn fibrillization in vivo, we used unilateral nigral AAV1/2-A53T-αSyn mouse model, where the KYP-2047 treatment was initiated two- or four-weeks post injection. KYP-2047 and anle138b protected cells from αSyn toxicity but interestingly, KYP-2047 did not reduce soluble αSyn oligomers. In AAV-A53T-αSyn mouse model, KYP-2047 reduced significantly proteinase K-resistant αSyn oligomers and oxidative damage related to αSyn aggregation. However, the KYP-2047 treatment that was initiated at the time of symptom onset, failed to protect the nigrostriatal dopaminergic neurons. Our results emphasize the importance of whole αSyn aggregation process in the pathology of PD and raise an important question about the forms of αSyn that are reasonable targets for PD drug therapy.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Endopeptidase K , Camundongos , Doença de Parkinson/tratamento farmacológico , Prolil Oligopeptidases
6.
ACS Med Chem Lett ; 12(10): 1578-1584, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34671446

RESUMO

Different five-membered nitrogen-containing heteroaromatics in the position of the typical electrophilic group in prolyl oligopeptidase (PREP) inhibitors were investigated and compared to tetrazole. The 2-imidazoles were highly potent inhibitors of the proteolytic activity. The binding mode for the basic imidazole was studied by molecular docking as it was expected to differ from the acidic tetrazole. A new putative noncovalent binding mode with an interaction to His680 was found for the 2-imidazoles. Inhibition of the proteolytic activity did not correlate with the modulating effect on protein-protein-interaction-derived functions of PREP (i.e., dimerization of alpha-synuclein and autophagy). Among the highly potent PREP inhibiting 2-imidazoles, only one was also a potent modulator of PREP-catalyzed alpha-synuclein dimerization, indicating that the linker length on the opposite side of the molecule from the five-membered heteroaromatic is critical for the disconnected structure-activity relationships.

7.
J Cell Mol Med ; 25(20): 9634-9646, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34486218

RESUMO

Multiple system atrophy (MSA) is a fatal neurodegenerative disease where the histopathological hallmark is glial cytoplasmic inclusions in oligodendrocytes, rich of aggregated alpha-synuclein (aSyn). Therefore, therapies targeting aSyn aggregation and toxicity have been studied as a possible disease-modifying therapy for MSA. Our earlier studies show that inhibition of prolyl oligopeptidase (PREP) with KYP-2047 reduces aSyn aggregates in several models. Here, we tested the effects of KYP-2047 on a MSA cellular models, using rat OLN-AS7 and human MO3.13 oligodendrocyte cells. As translocation of p25α to cell cytosol has been identified as an inducer of aSyn aggregation in MSA models, the cells were transiently transfected with p25α. Similar to earlier studies, p25α increased aSyn phosphorylation and aggregation, and caused tubulin retraction and impaired autophagy in OLN-AS7 cells. In both cellular models, p25α transfection increased significantly aSyn mRNA levels and also increased the levels of inactive protein phosphatase 2A (PP2A). However, aSyn or p25α did not cause any cellular death in MO3.13 cells, questioning their use as a MSA model. Simultaneous administration of 10 µM KYP-2047 improved cell viability, decreased insoluble phosphorylated aSyn and normalized autophagy in OLN-AS7 cells but similar impact was not seen in MO3.13 cells.


Assuntos
Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Prolil Oligopeptidases/antagonistas & inibidores , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , Linhagem Celular , Sobrevivência Celular , Humanos , Atrofia de Múltiplos Sistemas/tratamento farmacológico , Atrofia de Múltiplos Sistemas/etiologia , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Fosforilação , Agregação Patológica de Proteínas/tratamento farmacológico
8.
Basic Clin Pharmacol Toxicol ; 129(4): 287-296, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34196102

RESUMO

Alterations in prolyl oligopeptidase (PREP) activity have been connected, for example, with bipolar and major depressive disorder, and several studies have reported that lack or inhibition of PREP blocks the effects of lithium on inositol 1,4,5-triphosphate (IP3 ) levels. However, the impact of PREP modulation on other intracellular targets of lithium, such as glycogen synthase kinase 3 beta (GSK3b) or protein kinase B (Akt), has not been studied. We recently found that PREP regulates protein phosphatase 2A (PP2A), and because GSK3b and Akt are PP2A substrates, we studied if PREP-related lithium insensitivity is dependent on PP2A. To assess this, HEK-293 and SH-SY5Y cells with PREP deletion or PREP inhibition (KYP-2047) were exposed to lithium, and thereafter, the phosphorylation levels of GSK3b and Akt were measured by Western blot. As expected, PREP deletion and inhibition blocked the lithium-induced phosphorylation on GSK3b and Akt in both cell lines. When lithium exposure was combined with okadaic acid, a PP2A inhibitor, KYP-2047 did not have effect on lithium-induced GSK3b and Akt phosphorylation. Therefore, we conclude that PREP deletion or inhibition blocks the intracellular effects of lithium on GSK3b and Akt via PP2A activation.


Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , Fosforilação/efeitos dos fármacos , Prolil Oligopeptidases/antagonistas & inibidores , Prolil Oligopeptidases/deficiência , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Lítio/farmacologia , Ácido Okadáico/farmacologia , Prolina/análogos & derivados , Prolina/farmacologia , Proteína Fosfatase 2/antagonistas & inibidores
9.
Int J Mol Sci ; 22(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33579026

RESUMO

Prolyl oligopeptidase (PREP) is a serine protease that binds to alpha-synuclein (aSyn) and induces its aggregation. PREP inhibitors have been shown to have beneficial effects in Parkinson's disease models by enhancing the clearance of aSyn aggregates and modulating striatal dopamine. Additionally, we have shown that PREP regulates phosphorylation and internalization of dopamine transporter (DAT) in mice. In this study, we clarified the mechanism behind this by using HEK-293 and PREP knock-out HEK-293 cells with DAT transfection. We tested the effects of PREP, PREP inhibition, and alpha-synuclein on PREP-related DAT regulation by using Western blot analysis and a dopamine uptake assay, and characterized the impact of PREP on protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) by using PKC assay and Western blot, respectively, as these kinases regulate DAT phosphorylation. Our results confirmed our previous findings that a lack of PREP can increase phosphorylation and internalization of DAT and decrease uptake of dopamine. PREP inhibition had a variable impact on phosphorylation of ERK dependent on the metabolic state of cells, but did not have an effect on phosphorylation or function of DAT. PREP modifications did not affect PKC activity either. Additionally, a lack of PREP elevated a DAT oligomerization that is associated with intracellular trafficking of DAT. Our results suggest that PREP-mediated phosphorylation, oligomerization, and internalization of DAT is not dependent on PKC or ERK.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Prolil Oligopeptidases/metabolismo , Proteína Quinase C/metabolismo , Células HEK293 , Humanos , Fosforilação , Multimerização Proteica
10.
Biomed Pharmacother ; 128: 110253, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32447211

RESUMO

Previous studies have shown that prolyl oligopeptidase (PREP) negatively regulates autophagy and increases the aggregation of alpha-synuclein (αSyn), linking it to the pathophysiology of Parkinson's disease. Our earlier results have revealed that the potent small molecular PREP inhibitor KYP-2047 is able to increase autophagy and decrease dimerization of αSyn but other PREP inhibitors have not been systematically studied for these two protein-protein interaction mediated biological functions of PREP. In this study, we characterized these effects for 12 known PREP inhibitors with IC50-values ranging from 0.2 nM to 1010 nM. We used protein-fragment complementation assay (PCA) to assess αSyn dimerization and Western Blot of microtubule-associated protein light chain 3B II (LC3B-II) and a GFP-LC3-RFP expressing cell line to study autophagy. In addition, we tested selected compounds in a cell-free αSyn aggregation assay, native gel electrophoresis, and determined the compound concentration inside the cell by LC-MS. We found that inhibition of the proteolytic activity of PREP did not predict decreased αSyn dimerization or increased autophagy, and we also confirmed that this result did not simply reflect concentration differences of the compounds inside the cell. Thus, PREP ligands regulate the effect of PREP on autophagy and αSyn aggregation through a conformational stabilization of the enzyme that is not equivalent to inhibiting its proteolytic activity.


Assuntos
Antiparkinsonianos/farmacologia , Autofagia/efeitos dos fármacos , Prolina/análogos & derivados , Prolil Oligopeptidases/antagonistas & inibidores , Inibidores de Serina Proteinase/farmacologia , alfa-Sinucleína/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Prolina/farmacologia , Prolil Oligopeptidases/genética , Prolil Oligopeptidases/metabolismo , Agregados Proteicos , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA