Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Comput Methods Biomech Biomed Engin ; 27(6): 751-764, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37078790

RESUMO

The hip capsule is a ligamentous structure that contributes to hip stability. This article developed specimen-specific finite element models that replicated internal-external (I-E) laxity for ten implanted hip capsules. Capsule properties were calibrated to minimize root mean square error (RMSE) between model and experimental torques. RMSE across specimens was 1.02 ± 0.21 Nm for I-E laxity and 0.78 ± 0.33 Nm and 1.10 ± 0.48 Nm during anterior and posterior dislocation, respectively. RMSE for the same models with average capsule properties was 2.39 ± 0.68 Nm. Specimen-specific models demonstrated the importance of capsule tensioning in hip stability and have relevance for surgical planning and evaluation of implant designs.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Luxações Articulares , Humanos , Análise de Elementos Finitos , Ligamentos , Próteses e Implantes
2.
J Clin Med ; 12(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37835021

RESUMO

The forces applied during a spinal manipulation produce a neuromuscular response in the paraspinal muscles. A systematic evaluation of the factors involved in producing this muscle activity provides a clinical insight. The purpose of this study is to quantify the effect of treatment factors (manipulation sequence and manipulation site) and response factors (muscle layer, muscle location, and muscle side) on the neuromuscular response to spinal manipulation. The surface and indwelling electromyographies of 8 muscle sites were recorded during lumbar side-lying manipulations in 20 asymptomatic participants. The effects of the factors on the number of muscle responses and the muscle activity onset delays were compared using mixed-model linear regressions, effect sizes, and equivalence testing. The treatment factors did not reveal statistical differences between the manipulation sequences (first or second) or manipulation sites (L3 or SI) in the number of muscle responses (p = 0.11, p = 0.28, respectively), or in muscle activity onset delays (p = 0.35 p = 0.35, respectively). There were significantly shorter muscle activity onset delays in the multifidi compared to the superficial muscles (p = 0.02). A small effect size of side (d = 0.44) was observed with significantly greater number of responses (p = 0.02) and shorter muscle activity onset delays (p < 0.001) in the muscles on the left side compared to the right. The location, layer, and side of the neuromuscular responses revealed trends of decreasing muscle response rates and increasing muscle activity onset delays as the distance from the manipulation site increased. These results build on the body of work suggesting that the specificity of manipulation site may not play a role in the neuromuscular response to spinal manipulation-at least within the lumbar spine. In addition, these results demonstrate that multiple manipulations performed in similar areas (L3 and S1) do not change the response significantly, as well as contribute to the clinical understanding that the muscle response rate is higher and with a shorter delay, the closer it is to the manipulation.

3.
Front Bioeng Biotechnol ; 11: 1153692, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274172

RESUMO

Skeletal muscles have a highly organized hierarchical structure, whose main function is to generate forces for movement and stability. To understand the complex heterogeneous behaviors of muscles, computational modeling has advanced as a non-invasive approach to evaluate relevant mechanical quantities. Aiming to improve musculoskeletal predictions, this paper presents a framework for modeling 3D deformable muscles that includes continuum constitutive representation, parametric determination, model validation, fiber distribution estimation, and integration of multiple muscles into a system level for joint motion simulation. The passive and active muscle properties were modeled based on the strain energy approach with Hill-type hyperelastic constitutive laws. A parametric study was conducted to validate the model using experimental datasets of passive and active rabbit leg muscles. The active muscle model with calibrated material parameters was then implemented to simulate knee bending during a squat with multiple quadriceps muscles. A computational fluid dynamics (CFD) fiber simulation approach was utilized to estimate the fiber arrangements for each muscle, and a cohesive contact approach was applied to simulate the interactions among muscles. The single muscle simulation results showed that both passive and active muscle elongation responses matched the range of the testing data. The dynamic simulation of knee flexion and extension showed the predictive capability of the model for estimating the active quadriceps responses, which indicates that the presented modeling pipeline is effective and stable for simulating multiple muscle configurations. This work provided an effective framework of a 3D continuum muscle model for complex muscle behavior simulation, which will facilitate additional computational and experimental studies of skeletal muscle mechanics. This study will offer valuable insight into the future development of multiscale neuromuscular models and applications of these models to a wide variety of relevant areas such as biomechanics and clinical research.

4.
J Biomech ; 149: 111487, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36868041

RESUMO

Representative data of asymptomatic, native-knee kinematics is important when studying changes in knee function across the lifespan. High-speed stereo radiography (HSSR) provides a reliable measure of knee kinematics to <1 mm of translation and 1° of rotation, but studies often have limited statistical power to make comparisons between groups or measure the contribution of individual variability. The purpose of this study is to examine in vivo condylar kinematics to quantify the transverse center-of-rotation, or pivot, location across the flexion range and challenge the medial-pivot paradigm in asymptomatic knee kinematics. We quantified the pivot location during supine leg press, knee extension, standing lunge, and gait for 53 middle-aged and older adults (27 men; 26 women: 50.8 ± 7.0 yrs, 1.75 ± 0.1 m, 79.1 ± 15.4 kg). A central- to medial-pivot location was identified for all activities with increased knee flexion associated with posterior translation of the center-of-rotation. The association between knee angle and anterior-posterior center-of-rotation location was not as strong as the relation between medial-lateral and anterior-posterior location, excluding gait. The Pearson's correlation for gait was stronger between knee angle and anterior-posterior center-of-rotation location (P < 0.001) than medial-lateral and anterior-posterior location (P = 0.0122). Individual variability accounted for a measurable proportion in variance explained of center-of-rotation location. Unique to gait, the lateral translation of center-of-rotation location resulted in the anterior translation of center-of-rotation at <10° knee flexion. Furthermore, no association between vertical ground-reaction force and center-of-rotation was identified.


Assuntos
Marcha , Articulação do Joelho , Masculino , Pessoa de Meia-Idade , Feminino , Humanos , Idoso , Articulação do Joelho/diagnóstico por imagem , Rotação , Grupo Social , Posição Ortostática
5.
Bioengineering (Basel) ; 11(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38247914

RESUMO

Subject-specific hip capsule models could offer insights into impingement and dislocation risk when coupled with computer-aided surgery, but model calibration is time-consuming using traditional techniques. This study developed a framework for instantaneously generating subject-specific finite element (FE) capsule representations from regression models trained with a probabilistic approach. A validated FE model of the implanted hip capsule was evaluated probabilistically to generate a training dataset relating capsule geometry and material properties to hip laxity. Multivariate regression models were trained using 90% of trials to predict capsule properties based on hip laxity and attachment site information. The regression models were validated using the remaining 10% of the training set by comparing differences in hip laxity between the original trials and the regression-derived capsules. Root mean square errors (RMSEs) in laxity predictions ranged from 1.8° to 2.3°, depending on the type of laxity used in the training set. The RMSE, when predicting the laxity measured from five cadaveric specimens with total hip arthroplasty, was 4.5°. Model generation time was reduced from days to milliseconds. The results demonstrated the potential of regression-based training to instantaneously generate subject-specific FE models and have implications for integrating subject-specific capsule models into surgical planning software.

6.
Clin Biomech (Bristol, Avon) ; 100: 105801, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36327548

RESUMO

BACKGROUND: Condyle-spanning plate-screw constructs have shown potential to lower the risks of femoral refractures after the healing of a primary Vancouver type B1 periprosthetic femoral fracture. Limited information exists to show how osteoporosis (a risk factor for periprosthetic femoral fractures) may affect the plate fixation during activities of daily living. METHODS: Using total hip arthroplasty and plate-implanted finite element models of three osteoporotic femurs, this study simulated physiological loads of three activities of daily living, as well as osteoporosis associated muscle weakening, and compared the calculated stress/strain, load transfer and local stiffness with experimentally validated models of three healthy femurs. Two plating systems and two construct lengths (a diaphyseal construct and a condyle-spanning construct) were modeled. FINDINGS: Osteoporotic femurs showed higher bone strain (21.9%) and higher peak plate stress (144.3%) as compared with healthy femurs. Compared with shorter diaphyseal constructs, condyle-spanning constructs of two plating systems reduced bone strains in both healthy and osteoporotic femurs (both applying 'the normal' and 'the weakened muscle forces') around the most distal diaphyseal screw and in the distal metaphysis, both locations where secondary fractures are typically reported. The lowered resultant compressive force and the increased local compressive stiffness in the distal diaphysis and metaphysis may be associated with strain reductions via condyle-spanning constructs. INTERPRETATION: Strain reductions in condyle-spanning constructs agreed with the clinically reported lowered risks of femoral refractures in the distal diaphysis and metaphysis. Multiple condylar screws may mitigate the concentrated strains in the lateral condyle, especially in osteoporotic femurs.


Assuntos
Atividades Cotidianas , Fraturas do Fêmur , Humanos , Densidade Óssea , Fraturas do Fêmur/cirurgia
7.
J Orthop Res ; 40(3): 604-613, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33928682

RESUMO

Dislocation remains the leading indication for revision of total hip arthroplasty (THA). The objective of this study was to use a computational model to compare the overall resistance to both anterior and posterior dislocation for the available THA constructs commonly considered by surgeons attempting to produce a stable joint. Patient-specific musculoskeletal models of THA patients performing activities consistent with anterior and posterior dislocation were developed to calculate joint contact forces and joint positions used for simulations of dislocation in a finite element model of the implanted hip that included an experimentally calibrated hip capsule representation. Dislocations were then performed with consideration of offset using +5 and +9 offset, iteratively with three lipped liner variations in jump distance (10°, 15°, and 20° lips), a size 40 head, and a dual-mobility construct. Dislocation resistance was quantified as the moment required to dislocate the hip and the integral of the moment-flexion angle (dislocation energy). Increasing head diameter increased resistive moment on average for anterior and posterior dislocation by 22% relative to a neutral configuration. A lipped liner resulted in increases in the resistive moment to posterior dislocation of 9%, 19%, and 47% for 10°, 15°, and 20° lips, a sensitivity of approximately 2.8 Nm/mm of additional jump distance. A dual-mobility acetabular design resulted in an average 38% increase in resistive moment and 92% increase in dislocation energy for anterior and posterior dislocation. A quantitative understanding of tradeoffs in the dislocation risk inherent to THA construct options is valuable in supporting surgical decision making.


Assuntos
Artroplastia de Quadril , Luxação do Quadril , Prótese de Quadril , Luxações Articulares , Acetábulo/cirurgia , Artroplastia de Quadril/métodos , Articulação do Quadril/cirurgia , Humanos , Desenho de Prótese , Falha de Prótese , Amplitude de Movimento Articular , Reoperação
8.
J Biomech Eng ; 144(3)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34505126

RESUMO

Plate fractures after fixation of a Vancouver Type B1 periprosthetic femoral fracture (PFF) are difficult to treat and could lead to severe disability. However, due to the lack of direct measurement of in vivo performance of the PFF fixation construct, it is unknown whether current standard mechanical tests or previous experimental and computational studies have appropriately reproduced the in vivo mechanics of the plate. To provide a basis for the evaluation and development of appropriate mechanical tests for assessment of plate fracture risk, this study applied loads of common activities of daily living (ADLs) to implanted femur finite element (FE) models with PFF fixation constructs with an existing or a healed PFF. Based on FE simulated plate mechanics, the standard four-point-bend test adequately matched the stress state and the resultant bending moment in the plate as compared with femur models with an existing PFF. In addition, the newly developed constrained three-point-bend tests were able to reproduce plate stresses in models with a healed PFF. Furthermore, a combined bending and compression cadaveric test was appropriate for risk assessment including both plate fracture and screw loosening after the complete healing of PFF. The result of this study provides the means for combined experimental and computational preclinical evaluation of PFF fixation constructs.


Assuntos
Fraturas do Fêmur , Fraturas Periprotéticas , Atividades Cotidianas , Placas Ósseas , Fraturas do Fêmur/cirurgia , Fêmur , Fixação Interna de Fraturas , Humanos , Testes Mecânicos , Fraturas Periprotéticas/cirurgia
9.
J Mech Behav Biomed Mater ; 125: 104960, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34794043

RESUMO

Secondary femoral fractures after the successful plate-screw fixation of a primary Vancouver type B1 periprosthetic femoral fracture (PFF) have been associated with the altered state of stress/strain in the femur as the result of plating. The laterally implanted condyle-spanning plate-screw constructs have shown promises clinically in avoiding secondary bone and implant failures as compared with shorter diaphyseal plates. Though the condyle-spanning plating has been hypothesized to avoid stress concentration in the femoral diaphysis through increasing the working length of the plate, biomechanical evidence is lacking on how plate length may impact the stress/strain state of the implanted femur. Through developing and experimentally validating finite element (FE) models of 3 cadaveric femurs, this study investigated the impact of plating on bone strains, load transfer and local stiffness, which were compared between FE models of 2 different plating systems that each had a diaphyseal configuration and a condyle-spanning configuration. Under simulated gait-loading, the condyle-spanning constructs of both plating systems were shown to lower the bone strains around the distal fixation screws (up to 24.8% reduction in maximum principal strain and 26.6% reduction in minimum principal strain) and in the distal metaphyseal shaft of the femur (up to 15.9% and 25.7% reductions in maximum and minimum principal strains, respectively), where secondary bone fractures have been typically reported. In the distal diaphyseal and metaphyseal shaft of femur, FE models of the condyle-spanning constructs were shown to increase the local compressive stiffness (up to 152.9% increases under simulated gait-loading) and decrease the transfer of compressive load (37.1% decreases under simulated gait-loading), which may be indicative of the lowered risks of bone damage.


Assuntos
Fraturas do Fêmur , Fêmur , Placas Ósseas , Fraturas do Fêmur/cirurgia , Fêmur/cirurgia , Fixação Interna de Fraturas , Humanos , Extremidade Inferior
10.
Comput Biol Med ; 139: 104945, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34678483

RESUMO

Kinematic tracking of healthy joints in radiography sequences is frequently performed by maximizing similarities between computed perspective projections of 3D computer models and corresponding objects' appearances in radiographic images. Significant human effort associated with manual tracking presents a major bottleneck in biomechanics research methods and limits the scale of target applications. The current work introduces a method for fully-automatic tracking of tibiofemoral and patellofemoral kinematics in stereo-radiography sequences for subjects performing dynamic activities. The proposed method involves the application of convolutional neural networks for annotating radiographs and a multi-stage optimization pipeline for estimating bone pose based on information provided by neural net predictions. Predicted kinematics are evaluated by comparing against manually-tracked trends across 20 distinct trials. Median absolute differences below 1.5 millimeters or degrees for 6 tibiofemoral and 3 patellofemoral degrees of freedom demonstrate the utility of our approach, which improves upon previous semi-automatic methods by enabling end-to-end automation. Implementation of a fully-automatic pipeline for kinematic tracking will benefit evaluation of human movement by enabling large-scale studies of healthy knee kinematics.


Assuntos
Imageamento Tridimensional , Articulação do Joelho , Fenômenos Biomecânicos , Humanos , Articulação do Joelho/diagnóstico por imagem , Redes Neurais de Computação , Radiografia
11.
Sensors (Basel) ; 21(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502766

RESUMO

Gait analysis based on inertial sensors has become an effective method of quantifying movement mechanics, such as joint kinematics and kinetics. Machine learning techniques are used to reliably predict joint mechanics directly from streams of IMU signals for various activities. These data-driven models require comprehensive and representative training datasets to be generalizable across the movement variability seen in the population at large. Bottlenecks in model development frequently occur due to the lack of sufficient training data and the significant time and resources necessary to acquire these datasets. Reliable methods to generate synthetic biomechanical training data could streamline model development and potentially improve model performance. In this study, we developed a methodology to generate synthetic kinematics and the associated predicted IMU signals using open source musculoskeletal modeling software. These synthetic data were used to train neural networks to predict three degree-of-freedom joint rotations at the hip and knee during gait either in lieu of or along with previously measured experimental gait data. The accuracy of the models' kinematic predictions was assessed using experimentally measured IMU signals and gait kinematics. Models trained using the synthetic data out-performed models using only the experimental data in five of the six rotational degrees of freedom at the hip and knee. On average, root mean square errors in joint angle predictions were improved by 38% at the hip (synthetic data RMSE: 2.3°, measured data RMSE: 4.5°) and 11% at the knee (synthetic data RMSE: 2.9°, measured data RMSE: 3.3°), when models trained solely on synthetic data were compared to measured data. When models were trained on both measured and synthetic data, root mean square errors were reduced by 54% at the hip (measured + synthetic data RMSE: 1.9°) and 45% at the knee (measured + synthetic data RMSE: 1.7°), compared to measured data alone. These findings enable future model development for different activities of clinical significance without the burden of generating large quantities of gait lab data for model training, streamlining model development, and ultimately improving model performance.


Assuntos
Aprendizado Profundo , Fenômenos Biomecânicos , Marcha , Análise da Marcha , Articulação do Joelho , Movimento
12.
J Biomech ; 123: 110439, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34004394

RESUMO

Joint contact and muscle forces estimated with musculoskeletal modeling techniques offer useful metrics describing movement quality that benefit multiple research and clinical applications. The expensive processing of laboratory data associated with generating these outputs presents challenges to researchers and clinicians, including significant time and expertise requirements that limit the number of subjects typically evaluated. The objective of the current study was to develop and compare machine learning techniques for rapid, data-driven estimation of musculoskeletal metrics from derived gait lab data. OpenSim estimates of patient joint and muscle forces during activities of daily living were simulated using laboratory data from 70 total knee replacement patients and used to develop 4 different machine learning algorithms. Trained machine learning models predicted both trend and magnitude of estimated joint contact (mean correlation coefficients ranging from 0.93 to 0.94 during gait) and muscle forces (mean correlation coefficients ranging from 0.83 to 0.91 during gait) based on anthropometrics, ground reaction forces, and joint angle data. Patient mechanics were accurately predicted by recurrent neural networks, even after removing dependence on key subsets of predictor features. The ability to quickly estimate patient mechanics from derived measurements of movement has the potential to broaden the impact of musculoskeletal modeling by enabling faster assessment in both clinical and research settings.


Assuntos
Atividades Cotidianas , Modelos Biológicos , Fenômenos Biomecânicos , Marcha , Humanos , Articulação do Joelho , Extremidade Inferior , Aprendizado de Máquina , Músculo Esquelético , Músculos
13.
J Biomech ; 120: 110363, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33725522

RESUMO

Femoral strain is indicative of the potential for bone remodeling (strain energy density, SED) and periprosthetic femoral fracture (magnitude of principal strains) after total hip arthroplasty (THA). Previous modeling studies have evaluated femoral strains in THA-implanted femurs under gait loads including both physiological hip contact force and femoral muscle forces. However, experimental replication of the complex muscle forces during activities of daily living (ADLs) is difficult for in vitro assessment of femoral implant or fixation hardware. Alternatively, cadaveric tests using simplified loading configurations have been developed to assess post-THA bone mechanics, although no current studies have demonstrated simplified loading configurations used in mechanical tests may simulate the physiological femoral strains under ADL loads. Using an optimization approach integrated with finite element analysis, this study developed axial compression and combined axial compression and torque testing configurations for three common ADLs (gait, stair-descent and sit-to-stand) via matching the SED profile of the femur in THA-implanted models of three specimens. The optimized simplified-loading models showed good agreement in predicting bone remodeling stimuli (post-THA change in SED per unit mass) and fatigue regions as compared with the ADL-loading models, as well as other modeling and clinical studies. The optimized simplified test configurations can provide a physiological-loading based pre-clinical platform for the evaluation of implant/fixation devices of the femur.


Assuntos
Atividades Cotidianas , Fêmur , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Estresse Mecânico , Torque
14.
Sensors (Basel) ; 20(19)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998329

RESUMO

Quantitative assessments of patient movement quality in osteoarthritis (OA), specifically spatiotemporal gait parameters (STGPs), can provide in-depth insight into gait patterns, activity types, and changes in mobility after total knee arthroplasty (TKA). A study was conducted to benchmark the ability of multiple deep neural network (DNN) architectures to predict 12 STGPs from inertial measurement unit (IMU) data and to identify an optimal sensor combination, which has yet to be studied for OA and TKA subjects. DNNs were trained using movement data from 29 subjects, walking at slow, normal, and fast paces and evaluated with cross-fold validation over the subjects. Optimal sensor locations were determined by comparing prediction accuracy with 15 IMU configurations (pelvis, thigh, shank, and feet). Percent error across the 12 STGPs ranged from 2.1% (stride time) to 73.7% (toe-out angle) and overall was more accurate in temporal parameters than spatial parameters. The most and least accurate sensor combinations were feet-thighs and singular pelvis, respectively. DNNs showed promising results in predicting STGPs for OA and TKA subjects based on signals from IMU sensors and overcomes the dependency on sensor locations that can hinder the design of patient monitoring systems for clinical application.


Assuntos
Artroplastia do Joelho , Aprendizado Profundo , Marcha , Osteoartrite , Humanos , Osteoartrite/fisiopatologia , Caminhada
15.
Biomech Model Mechanobiol ; 19(4): 1297-1307, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32562094

RESUMO

Instability and dislocation remain leading indications for revision of total hip arthroplasty (THA). Many studies have addressed the links between implant design and dislocation; however, an understanding of the impact of alignment and kinematic variability on constraint of modern THA constructs to provide joint stability is needed. The objective of this study is to provide objective data to be considered in the treatment algorithm to protect against joint instability. Joint contact and muscle forces were evaluated using musculoskeletal models of THA patients performing activities consistent with posterior and anterior dislocation. Position and joint loads were transferred to a finite element simulation with an experimentally calibrated hip capsule representation, where they were kinematically extrapolated until impingement and eventual dislocation. Cup anteversion and inclination were varied according to clinical measurements, and variation in imposed kinematics was included. The resistive moment provided by the contact force and joint capsule, and overall dislocation rate (dislocations/total simulations) were determined with neutral and lipped acetabular liners. Use of a lipped liner did increase the resistive moment in posterior dislocation, by an average of 5.2 Nm, and the flexion angle at dislocation by 1.4° compared to a neutral liner. There was a reduction in similar magnitude in resistance to anterior dislocation. Increased cup anteversion and inclination, hip abduction and internal rotation all reduced the occurrence of posterior dislocation but increased anterior dislocation. A quantitative understanding of tradeoffs in the dislocation risk inherent to THA construct options is valuable in supporting surgical decision making.


Assuntos
Artroplastia de Quadril , Luxação do Quadril/fisiopatologia , Prótese de Quadril , Acetábulo/cirurgia , Fenômenos Biomecânicos , Simulação por Computador , Análise de Elementos Finitos , Humanos , Modelos Biológicos , Músculos/fisiopatologia , Polietileno/química , Pressão
16.
Comput Methods Biomech Biomed Engin ; 23(11): 755-764, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32432892

RESUMO

The objective of this study was to develop a probabilistic representation of the hip capsule, which is calibrated to experimental capsular torque-rotation behavior and captures the observed variability for use in population-based studies. A finite element model of the hip capsule was developed with structures composed of a fiber-reinforced membrane, represented by 2D quadrilateral elements embedded with tension-only non-linear spring. An average capsule representation was developed by calibrating ligament properties (linear stiffness, reference strain) so that torque-rotation behavior matched mean cadaveric data. A probabilistic capsule was produced by determining the ligament property variability which represented ±2 SD measured in the experiment. Differences between experimental and model kinematics across all positions had RMS error of 4.7°. Output bounds from the optimized probabilistic capsule representation were consistent with ±2 SD of experimental data; the overall RMS error was 5.1°. This model can be employed in population-based finite element studies of THA to assess mechanics in realistic scenarios considering implant design, as well as surgical and patient factors.


Assuntos
Análise de Elementos Finitos , Ossos Pélvicos/fisiologia , Idoso , Fenômenos Biomecânicos , Calibragem , Humanos , Ligamentos , Masculino , Rotação , Torque
17.
J Biomech ; 93: 18-27, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31221457

RESUMO

Lower extremity muscle strength training is a focus of rehabilitation following total hip arthroplasty (THA). Strength of the hip abductor muscle group is a predictor of overall function following THA. The purpose of this study was to investigate the effects of hip abductor strengthening following rehabilitation on joint contact forces (JCFs) in the lower extremity and low back during a high demand step down task. Five THA patients performed lower extremity maximum isometric strength tests and a stair descent task. Patient-specific musculoskeletal models were created in OpenSim and maximum isometric strength parameters were scaled to reproduce measured pre-operative joint torques. A pre-operative forward dynamic simulation of each patient performing the stair descent was constructed using their corresponding patient-specific model to predict JCFs at the ankle, knee, hip, and low back. The hip abductor muscles were strengthened with clinically supported increases (0-30%) above pre-operative values in a probabilistic framework to predict the effects on peak JCFs (99% confidence bounds). Simulated hip abductor strengthening resulted in lower peak JCFs relative to pre-operative for all five patients at the hip (18.9-23.8 ±â€¯16.5%) and knee (20.5-23.8 ±â€¯11.2%). Four of the five patients had reductions at the ankle (7.1-8.5 ±â€¯11.3%) and low back (3.5-7.0 ±â€¯5.3%) with one patient demonstrating no change. The reduction in JCF at the hip joint and at joints other than the hip with hip abductor strengthening demonstrates the dynamic and mechanical interdependencies of the knee, hip and spine that can be targeted in early THA rehabilitation to improve overall patient function.


Assuntos
Artroplastia de Quadril/reabilitação , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Modelagem Computacional Específica para o Paciente , Treinamento Resistido , Idoso , Articulação do Tornozelo/fisiologia , Feminino , Articulação do Quadril/fisiologia , Humanos , Joelho , Articulação do Joelho/fisiologia , Masculino , Pessoa de Meia-Idade , Modalidades de Fisioterapia
18.
Clin Biomech (Bristol, Avon) ; 53: 93-100, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29482087

RESUMO

BACKGROUND: Component alignment is an important consideration in total hip arthroplasty. The impact of changes in alignment on muscle forces and joint contact forces during dynamic tasks are not well understood, and have the potential to influence surgical decision making. The objectives of this study were to assess the impact of femoral head/stem and cup component placement on hip muscle and joint contact forces during tasks of daily living and to identify which alignment parameters have the greatest impact on joint loading. METHODS: Using a series of strength-calibrated, subject-specific musculoskeletal models of patients performing gait, sit-to-stand and step down tasks, component alignments were perturbed and joint contact and muscle forces evaluated. FINDINGS: Based on the range of alignments reported clinically, variation in head/stem anteversion-retroversion had the largest impact of any degree of freedom throughout all three tasks; average contact forces 413.5 (319.1) N during gait, 262.7 (256.4) N during sit to stand, and 572.7 (228.1) N during the step down task. The sensitivity of contact force to anteversion-retroversion of the head/stem was 31.5 N/° for gait, which was similar in magnitude to anterior-posterior position of the cup (34.6 N/m for gait). Additionally, superior-inferior cup alignment resulted in 16.4 (4.9)° of variation in the direction of the hip joint contact force across the three tasks, with the most inferior cup placements moving the force vector towards the cup equator at the point of peak joint contact force. INTERPRETATION: A quantitative understanding of the impact and potential tradeoffs when altering component alignment is valuable in supporting surgical decision making.


Assuntos
Artroplastia de Quadril , Marcha/fisiologia , Articulação do Quadril/fisiologia , Músculo Esquelético/fisiologia , Osteoartrite/cirurgia , Adulto , Idoso , Fenômenos Biomecânicos , Feminino , Cabeça do Fêmur/cirurgia , Quadril/cirurgia , Prótese de Quadril , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite/fisiopatologia
19.
J Verif Valid Uncertain Quantif ; 2(3): 0310031-310038, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35832400

RESUMO

Joint kinetic measurement is a fundamental tool used to quantify compensatory movement patterns in participants with transtibial amputation (TTA). Joint kinetics are calculated through inverse dynamics (ID) and depend on segment kinematics, external forces, and both segment and prosthetic inertial parameters (PIPS); yet the individual influence of PIPs on ID is unknown. The objective of this investigation was to assess the importance of parameterizing PIPs when calculating ID using a probabilistic analysis. A series of Monte Carlo simulations were performed to assess the influence of uncertainty in PIPs on ID. Multivariate input distributions were generated from experimentally measured PIPs (foot/shank: mass, center of mass (COM), moment of inertia) of ten prostheses and output distributions were hip and knee joint kinetics. Confidence bounds (2.5-97.5%) and sensitivity of outputs to model input parameters were calculated throughout one gait cycle. Results demonstrated that PIPs had a larger influence on joint kinetics during the swing period than the stance period (e.g., maximum hip flexion/extension moment confidence bound size: stance = 5.6 N·m, swing: 11.4 N·m). Joint kinetics were most sensitive to shank mass during both the stance and swing periods. Accurate measurement of prosthesis shank mass is necessary to calculate joint kinetics with ID in participants with TTA with passive prostheses consisting of total contact carbon fiber sockets and dynamic elastic response feet during walking.

20.
J Manipulative Physiol Ther ; 39(4): 288-93, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27059250

RESUMO

OBJECTIVE: The purpose of this study was to evaluate differences in muscle activity in participants with and without low back pain during a side-lying lumbar diversified spinal manipulation. METHODS: Surface and indwelling electromyography at eight muscle locations were recorded during lumbar side-lying manipulations in 20 asymptomatic participants and 20 participants with low back pain. The number of muscle responses and muscle activity onset delays in relation to the manipulation impulse were compared in the 2 pain groups using mixed linear regressions. Effect sizes for all comparisons were calculated using Cohen's d. RESULTS: Muscle responses occurred in 61.6% ± 23.6% of the EMG locations in the asymptomatic group and 52.8% ± 26.3% of the symptomatic group. The difference was not statistically significant but there was a small effect of pain (d = 0.350). Muscle activity onset delays were longer for the symptomatic group at every EMG location except the right side indwelling L5 electrode, and a small effect of pain was present at the left L2, quadratus lumborum and trapezius surface electrodes (d = 0.311, 0.278, and 0.265) respectively. The indwelling electrodes demonstrated greater muscle responses (P ≤ .01) and shorter muscle activity onset delays (P < .01) than the surface electrodes. CONCLUSIONS: The results revealed trends that indicate participants with low back pain have less muscle responses, and when muscle responses are present they occur with longer onset delays following the onset of a manipulation impulse.


Assuntos
Músculos do Dorso/fisiopatologia , Dor Lombar/fisiopatologia , Manipulação da Coluna , Contração Muscular/fisiologia , Reflexo/fisiologia , Adulto , Eletromiografia , Humanos , Vértebras Lombares/fisiopatologia , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA