Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(7): e0073524, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38874360

RESUMO

Oncogenic HPV E6 proteins have a PDZ-binding motif (PBM) which plays important roles in both the viral life cycle and tumor development. The PBM confers interaction with a large number of different PDZ domain-containing substrates, one of which is Sorting Nexin 27. This protein is part of the retromer complex and plays an important role in endocytic sorting pathways. It has been shown that at least two SNX27 interacting partners, GLUT1 and TANC2, are aberrantly trafficked due to the E6 PBM-dependent interaction with SNX27. To investigate further which other components of the endocytic trafficking pathway might be affected by the SNX27-HPV E6 interaction, we analyzed the SNX27 proteome interaction profile in a previously described HeLa cell line expressing GFP-SNX27, both in the presence and absence of the HPV-18 E6 oncoprotein. In this study, we identify a novel interacting partner of SNX27, secreted glycoprotein EMILIN2, whose release is blocked by HPV18 E6 in a PBM-dependent manner. Mechanistically, E6 can block EMILIN2 interaction with the WNT1 ligand, thereby enhancing WNT1 signaling and promoting cell proliferation. IMPORTANCE: This study demonstrates that HPV E6 blocks EMILIN2 inhibition of WNT1 signaling, thereby enhancing cell proliferation in HPV-positive tumor cells. This involves a novel mechanism whereby the E6 PBM actually contributes toward enhancing the interaction between SNX27 and EMILIN2, suggesting that the mode of recognition of SNX27 by E6 and EMILIN2 is different. This is the first example of the E6 PBM altering a PDZ domain-containing protein to enhance potential substrate recognition.


Assuntos
Papillomavirus Humano 18 , Proteínas Oncogênicas Virais , Nexinas de Classificação , Via de Sinalização Wnt , Humanos , Proteínas de Ligação a DNA , Células HEK293 , Células HeLa , Papillomavirus Humano 18/metabolismo , Papillomavirus Humano 18/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/metabolismo , Domínios PDZ , Ligação Proteica , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Nexinas de Classificação/metabolismo , Nexinas de Classificação/genética
2.
Microbiol Spectr ; 12(5): e0417923, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38511955

RESUMO

A common feature of N-acyl-l-homoserine lactone (AHL) quorum-sensing (QS) systems is that the AHL signal is autoinducing. Once induced, a cell will further amplify the signal via a positive feedback loop. Pseudomonas fuscovaginae UPB0736 has two fully functional AHL QS systems, called PfsI/R and PfvI/R, which are inactive in a standard laboratory setting. In this work, we induce the QS systems with exogenous AHL signals and characterize the AHL signal amplification effect and QS activation dynamics at community and single-cell level. While the cognate signal is in both cases significantly further amplified to physiologically relevant levels, we observe only a limited response in terms of AHL synthase gene promoter activity. Additionally, the PfsI/R QS system exhibits a unique dramatic phenotypic heterogeneity, where only up to 5% of all cells amplify the signal further and are, thus, considered to be QS active. IMPORTANCE: Bacteria use N-acyl-l-homoserine lactone (AHL) quorum-sensing (QS) systems for population-wide phenotypic coordination. The QS configuration in Pseudomonas fuscovaginae is dramatically different from other model examples of AHL QS signaling and, thus, represents an important exception to the norm, which usually states that QS triggers population-wide phenotypic transitions in relation to cell density. We argue that the differences in QS dynamics of P. fuscovaginae highlight its different evolutionary purpose, which is ultimately dictated by the selective pressures of its natural habitat. We hope that this example will further expand our understanding of the complex and yet unknown QS-enabled sociomicrobiology. Furthermore, we argue that exemptions to the QS norm will be found in other plant-pathogenic bacterial strains that grow in similar environments and that molecularly similar QS systems do not necessarily share a similar evolutionary purpose; therefore, generalizations about bacterial cell-to-cell signaling systems function should be avoided.


Assuntos
Acil-Butirolactonas , Ligases , Pseudomonas , Percepção de Quorum , Pseudomonas/genética , Pseudomonas/fisiologia , Acil-Butirolactonas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas
3.
Tumour Virus Res ; 17: 200279, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38485055

RESUMO

Multiple cellular pathways are affected by HPV E6 and E7 oncoproteins, including endocytic and cellular trafficking. HPV-16 E7 can target the adaptor protein (AP) complex, which contains proteins important during endocytosis transport. To further investigate the role of HPV E7 during this process, we analysed the expression of cell surface proteins in NIKS cells expressing HPV-16 E7. We show that different cell surface proteins are regulated by HPV-16 E7 via interaction with AP2. We observed that the expression of MET and CD109 membrane protein seems to be upregulated in cells expressing E7. Moreover, the interaction of MET and CD109 with AP2 proteins is disrupted by HPV-16 E7. In addition, in the absence of HPV-16 E7, there is a downregulation of the cell membrane expression of MET and CD109 in HPV-positive cell lines. These results expand our knowledge of the functions of E7 and open new potential cellular pathways affected by this oncoprotein.


Assuntos
Antígenos CD , Papillomavirus Humano 16 , Proteínas E7 de Papillomavirus , Proteínas Proto-Oncogênicas c-met , Humanos , Proteínas E7 de Papillomavirus/metabolismo , Proteínas E7 de Papillomavirus/genética , Antígenos CD/metabolismo , Antígenos CD/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 16/genética , Complexo 2 de Proteínas Adaptadoras/metabolismo , Complexo 2 de Proteínas Adaptadoras/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Membrana Celular/metabolismo , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/virologia , Endocitose , Proteínas Ligadas por GPI
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA