Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 44(14)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38351000

RESUMO

Research on the role of the hippocampus in memory acquisition has generally focused on active learning. But to understand memory, it is at least as important to understand processes that happen offline, during both wake and sleep. In a study of patients with amnesia, we previously demonstrated that although a functional hippocampus is not necessary for the acquisition of procedural motor memory during training session, it is required for its offline consolidation during sleep. Here, we investigated whether an intact hippocampus is also required for the offline consolidation of procedural motor memory while awake. Patients with amnesia due to hippocampal damage (n = 4, all male) and demographically matched controls (n = 10, 8 males) trained on the finger tapping motor sequence task. Learning was measured as gains in typing speed and was divided into online (during task execution) and offline (during interleaved 30 s breaks) components. Amnesic patients and controls showed comparable total learning, but differed in the pattern of performance improvement. Unlike younger adults, who gain speed across breaks, both groups gained speed only while typing. Only controls retained these gains over the breaks; amnesic patients slowed down and compensated for these losses during subsequent typing. In summary, unlike their peers, whose motor performance remained stable across brief breaks in typing, amnesic patients showed evidence of impaired access to motor procedural memory. We conclude that in addition to being necessary for the offline consolidation of motor memories during sleep, the hippocampus maintains access to motor memory across brief offline periods during wake.


Assuntos
Consolidação da Memória , Desempenho Psicomotor , Adulto , Humanos , Masculino , Destreza Motora , Memória , Sono , Amnésia , Hipocampo
2.
Sleep Med ; 113: 56-60, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984018

RESUMO

BACKGROUND: While connections between children's sleep and their daytime functioning are well established, less is known about the microstructural features of sleep that support emotional wellbeing. Investigating these relationships in healthy children may provide insight into adaptive emotional development. We therefore examined associations between non-rapid eye movement (N2) sleep spindles and both state- and trait-based measures of emotion. METHODS: A sample of 30 children (7-11 years) without psychiatric disorders completed a baseline assessment, one night of at-home polysomnography (PSG), and an in-lab emotional state assessment the next day including self-reported arousal in response to affective images. Trait-based measures of anxiety and depression as well as savoring, a positive emotion regulatory strategy, were also completed. N2 sleep spindle parameters, including spindle density (number/min) and peak frequency in central regions, were detected using an automated algorithm. RESULTS: Greater spindle density was significantly associated with decreased state-based emotional arousal towards negative affective images, and greater spindle peak frequency was associated with greater trait-based use of savoring. However, neither spindle parameter was associated with child anxiety or depressive symptoms. CONCLUSIONS: Findings align with and expand on prior research to suggest that N2 sleep spindles support adaptive emotional functioning in school-aged children.


Assuntos
Fases do Sono , Sono , Criança , Humanos , Sono/fisiologia , Fases do Sono/fisiologia , Polissonografia , Ansiedade , Transtornos de Ansiedade , Eletroencefalografia
3.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961668

RESUMO

Sleep spindles are believed to mediate sleep-dependent memory consolidation, particularly when coupled to neocortical slow oscillations. Schizophrenia is characterized by a deficit in sleep spindles that correlates with reduced overnight memory consolidation. Here, we examined sleep spindle activity, slow oscillation-spindle coupling, and both motor procedural and verbal declarative memory consolidation in early course, minimally medicated psychosis patients and non-psychotic first-degree relatives. Using a four-night experimental procedure, we observed significant deficits in spindle density and amplitude in patients relative to controls that were driven by individuals with schizophrenia. Schizophrenia patients also showed reduced sleep-dependent consolidation of motor procedural memory, which correlated with spindle density. Contrary to expectations, there were no group differences in the consolidation of declarative memory on a word pairs task. Nor did the relatives of patients differ in spindle activity or memory consolidation compared with controls, however increased consistency in the timing of SO-spindle coupling were seen in both patient and relatives. Our results extend prior work by demonstrating correlated deficits in sleep spindles and sleep-dependent motor procedural memory consolidation in early course, minimally medicated patients with schizophrenia, but not in first-degree relatives. This is consistent with other work in suggesting that impaired sleep-dependent memory consolidation has some specificity for schizophrenia and is a core feature rather than reflecting the effects of medication or chronicity.

4.
Sleep ; 46(10)2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37531587

RESUMO

STUDY OBJECTIVES: Healthy aging and many disorders show reduced sleep-dependent memory consolidation and corresponding alterations in non-rapid eye movement sleep oscillations. Yet sleep physiology remains a relatively neglected target for improving memory. We evaluated the effects of closed-loop auditory stimulation during sleep (CLASS) on slow oscillations (SOs), sleep spindles, and their coupling, all in relation to motor procedural memory consolidation. METHODS: Twenty healthy young adults had two afternoon naps: one with auditory stimulation during SO upstates and another with no stimulation. Twelve returned for a third nap with stimulation at variable times in relation to SO upstates. In all sessions, participants trained on the motor sequence task prior to napping and were tested afterward. RESULTS: Relative to epochs with no stimulation, upstate stimuli disrupted sleep and evoked SOs, spindles, and SO-coupled spindles. Stimuli that successfully evoked oscillations were delivered closer to the peak of the SO upstate and when spindle power was lower than stimuli that failed to evoke oscillations. Across conditions, participants showed similar significant post-nap performance improvement that correlated with the density of SO-coupled spindles. CONCLUSIONS: Despite its strong effects on sleep physiology, CLASS failed to enhance motor procedural memory. Our findings suggest methods to overcome this failure, including better sound calibration to preserve sleep continuity and the use of real-time predictive algorithms to more precisely target SO upstates and to avoid disrupting endogenous SO-coupled spindles and their mnemonic function. They motivate continued development of CLASS as an intervention to manipulate sleep oscillatory dynamics and improve memory.


Assuntos
Consolidação da Memória , Adulto Jovem , Humanos , Estimulação Acústica , Consolidação da Memória/fisiologia , Sono/fisiologia , Memória/fisiologia , Eletroencefalografia
5.
Autism Res ; 16(2): 271-279, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36546577

RESUMO

There is converging evidence that abnormal thalamocortical interactions contribute to attention deficits and sensory sensitivities in autism spectrum disorder (ASD). However, previous functional MRI studies of thalamocortical connectivity in ASD have produced inconsistent findings in terms of both the direction (hyper vs. hypoconnectivity) and location of group differences. This may reflect, in part, the confounding effects of head motion during scans. In the present study, we investigated resting-state thalamocortical functional connectivity in 8-25 year-olds with ASD and their typically developing (TD) peers. We used pre-scan training, on-line motion correction, and rigorous data quality assurance protocols to minimize motion confounds. ASD participants showed increased thalamic connectivity with temporal cortex relative to TD. Both groups showed similar age-related decreases in thalamic connectivity with occipital cortex, consistent with a process of circuit refinement. Findings of thalamocortical hyperconnectivity in ASD are consistent with other evidence that decreased thalamic inhibition leads to increase and less filtered sensory information reaching the cortex where it disrupts attention and contributes to sensory sensitivity. This literature motivates studies of mechanisms, functional consequences, and treatment of thalamocortical circuit dysfunction in ASD.


Assuntos
Transtorno do Espectro Autista , Humanos , Criança , Adulto Jovem , Transtorno do Espectro Autista/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Lobo Occipital , Vias Neurais/diagnóstico por imagem , Mapeamento Encefálico/métodos
6.
bioRxiv ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38234726

RESUMO

Background: Multiple facets of sleep neurophysiology, including electroencephalography (EEG) metrics such as non-rapid eye movement (NREM) spindles and slow oscillations (SO), are altered in individuals with schizophrenia (SCZ). However, beyond group-level analyses which treat all patients as a unitary set, the extent to which NREM deficits vary among patients is unclear, as are their relationships to other sources of heterogeneity including clinical factors, illness duration and ageing, cognitive profiles and medication regimens. Using newly collected high density sleep EEG data on 103 individuals with SCZ and 68 controls, we first sought to replicate our previously reported (Kozhemiako et. al, 2022) group-level mean differences between patients and controls (original N=130). Then in the combined sample (N=301 including 175 patients), we characterized patient-to-patient variability in NREM neurophysiology. Results: We replicated all group-level mean differences and confirmed the high accuracy of our predictive model (Area Under the ROC Curve, AUC = 0.93 for diagnosis). Compared to controls, patients showed significantly increased between-individual variability across many (26%) sleep metrics, with patterns only partially recapitulating those for group-level mean differences. Although multiple clinical and cognitive factors were associated with NREM metrics including spindle density, collectively they did not account for much of the general increase in patient-to-patient variability. Medication regimen was a greater (albeit still partial) contributor to variability, although original group mean differences persisted after controlling for medications. Some sleep metrics including fast spindle density showed exaggerated age-related effects in SCZ, and patients exhibited older predicted biological ages based on an independent model of ageing and the sleep EEG. Conclusion: We demonstrated robust and replicable alterations in sleep neurophysiology in individuals with SCZ and highlighted distinct patterns of effects contrasting between-group means versus within-group variances. We further documented and controlled for a major effect of medication use, and pointed to greater age-related change in NREM sleep in patients. That increased NREM heterogeneity was not explained by standard clinical or cognitive patient assessments suggests the sleep EEG provides novel, nonredundant information to support the goals of personalized medicine. Collectively, our results point to a spectrum of NREM sleep deficits among SCZ patients that can be measured objectively and at scale, and that may offer a unique window on the etiological and genetic diversity that underlies SCZ risk, treatment response and prognosis.

7.
Children (Basel) ; 9(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36138632

RESUMO

OBJECTIVE: Insomnia and daytime behavioral problems are common issues in pediatric autism spectrum disorder (ASD), yet specific underlying relationships with NonRapid Eye Movement sleep (NREM) and Rapid Eye Movement (REM) sleep architecture are understudied. We hypothesize that REM sleep alterations (REM%, REM EEG power) are associated with more internalizing behaviors and NREM sleep deficits (N3%; slow wave activity (SWA) 0.5-3 Hz EEG power) are associated with increased externalizing behaviors in children with ASD vs. typical developing controls (TD). METHODS: In an age- and gender-matched pediatric cohort of n = 23 ASD and n = 20 TD participants, we collected macro/micro sleep architecture with overnight home polysomnogram and daytime behavior scores with Child Behavior Checklist (CBCL) scores. RESULTS: Controlling for non-verbal IQ and medication use, ASD and TD children have similar REM and NREM sleep architecture. Only ASD children show positive relationships between REM%, REM theta power and REM beta power with internalizing scores. Only TD participants showed an inverse relationship between NREM SWA and externalizing scores. CONCLUSION: REM sleep measures reflect concerning internalizing behaviours in ASD and could serve as a biomarker for mood disorders in this population. While improving deep sleep may help externalizing behaviours in TD, we do not find evidence of this relationship in ASD.

8.
Front Neurol ; 13: 871166, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35785365

RESUMO

Sleep spindles, defining oscillations of stage II non-rapid eye movement sleep (N2), mediate sleep-dependent memory consolidation. Spindles are disrupted in several neurodevelopmental, neuropsychiatric, and neurodegenerative disorders characterized by cognitive impairment. Increasing spindles can improve memory suggesting spindles as a promising physiological target for the development of cognitive enhancing therapies. This effort would benefit from more comprehensive and spatially precise methods to characterize spindles. Spindles, as detected with electroencephalography (EEG), are often widespread across electrodes. Available evidence, however, suggests that they act locally to enhance cortical plasticity in the service of memory consolidation. Here, we present a novel method to enhance the spatial specificity of cortical source estimates of spindles using combined EEG and magnetoencephalography (MEG) data constrained to the cortex based on structural MRI. To illustrate this method, we used simultaneous EEG and MEG recordings from 25 healthy adults during a daytime nap. We first validated source space spindle detection using only EEG data by demonstrating strong temporal correspondence with sensor space EEG spindle detection (gold standard). We then demonstrated that spindle source estimates using EEG alone, MEG alone and combined EEG/MEG are stable across nap sessions. EEG detected more source space spindles than MEG and each modality detected non-overlapping spindles that had distinct cortical source distributions. Source space EEG was more sensitive to spindles in medial frontal and lateral prefrontal cortex, while MEG was more sensitive to spindles in somatosensory and motor cortices. By combining EEG and MEG data this method leverages the differential spatial sensitivities of the two modalities to obtain a more comprehensive and spatially specific source estimation of spindles than possible with either modality alone.

9.
Elife ; 112022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35578829

RESUMO

Motivated by the potential of objective neurophysiological markers to index thalamocortical function in patients with severe psychiatric illnesses, we comprehensively characterized key non-rapid eye movement (NREM) sleep parameters across multiple domains, their interdependencies, and their relationship to waking event-related potentials and symptom severity. In 72 schizophrenia (SCZ) patients and 58 controls, we confirmed a marked reduction in sleep spindle density in SCZ and extended these findings to show that fast and slow spindle properties were largely uncorrelated. We also describe a novel measure of slow oscillation and spindle interaction that was attenuated in SCZ. The main sleep findings were replicated in a demographically distinct sample, and a joint model, based on multiple NREM components, statistically predicted disease status in the replication cohort. Although also altered in patients, auditory event-related potentials elicited during wake were unrelated to NREM metrics. Consistent with a growing literature implicating thalamocortical dysfunction in SCZ, our characterization identifies independent NREM and wake EEG biomarkers that may index distinct aspects of SCZ pathophysiology and point to multiple neural mechanisms underlying disease heterogeneity. This study lays the groundwork for evaluating these neurophysiological markers, individually or in combination, to guide efforts at treatment and prevention as well as identifying individuals most likely to benefit from specific interventions.


Assuntos
Esquizofrenia , Eletroencefalografia , Humanos , Neurofisiologia , Polissonografia , Sono/fisiologia
10.
Sleep ; 45(3)2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35022792

RESUMO

STUDY OBJECTIVES: Converging evidence from neuroimaging, sleep, and genetic studies suggest that dysregulation of thalamocortical interactions mediated by the thalamic reticular nucleus (TRN) contribute to autism spectrum disorder (ASD). Sleep spindles assay TRN function, and their coordination with cortical slow oscillations (SOs) indexes thalamocortical communication. These oscillations mediate memory consolidation during sleep. In the present study, we comprehensively characterized spindles and their coordination with SOs in relation to memory and age in children with ASD. METHODS: Nineteen children and adolescents with ASD, without intellectual disability, and 18 typically developing (TD) peers, aged 9-17, completed a home polysomnography study with testing on a spatial memory task before and after sleep. Spindles, SOs, and their coordination were characterized during stages 2 (N2) and 3 (N3) non-rapid eye movement sleep. RESULTS: ASD participants showed disrupted SO-spindle coordination during N2 sleep. Spindles peaked later in SO upstates and their timing was less consistent. They also showed a spindle density (#/min) deficit during N3 sleep. Both groups showed significant sleep-dependent memory consolidation, but their relations with spindle density differed. While TD participants showed the expected positive correlations, ASD participants showed the opposite. CONCLUSIONS: The disrupted SO-spindle coordination and spindle deficit provide further evidence of abnormal thalamocortical interactions and TRN dysfunction in ASD. The inverse relations of spindle density with memory suggest a different function for spindles in ASD than TD. We propose that abnormal sleep oscillations reflect genetically mediated disruptions of TRN-dependent thalamocortical circuit development that contribute to the manifestations of ASD and are potentially treatable.


Assuntos
Transtorno do Espectro Autista , Consolidação da Memória , Sono de Ondas Lentas , Adolescente , Ataxia , Criança , Eletroencefalografia , Humanos , Consolidação da Memória/fisiologia , Sono/fisiologia
11.
Cureus ; 14(12): e32482, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36644094

RESUMO

Background Clinical performance, anterior knee stability, and isokinetic strength after anterior cruciate ligament (ACL) reconstruction with hamstring autografts are mainly influenced by graft selection, femoral tunnel preparation, and type of femoral fixation. Expandable femoral fixation devices are expected to provide a stronger initial fixation with circular graft compression, a blind-ended tunnel in the femur with less enlargement, and a theoretical double-band ACL equivalent through graft rotation. This study aimed to evaluate isokinetic strength and functional capacity after ACL reconstruction with hamstring tendons using two different anatomical femoral fixation techniques (expandable vs fixed-looped button). Methodology A total of 48 male patients with ACL deficient knees were randomized to two different femoral fixation groups, namely, the expandable (AperFix) and the standard cortical (Button) group. The primary outcome measures were isokinetic hamstrings and quadriceps strength capabilities and the hamstrings/quadriceps ratio at 60 degrees/second (°/s) and 180°/s using a Cybex before and at three, six, nine, 12, and 24 months after surgery. Secondary measurements were anteroposterior knee stability at two years (using KT-1000 arthrometer) and the functional outcome using the International Knee Documentation Committee (IKDC 2000) form, the Tegner activity scale, and the Lysholm knee score. Data were compared using a paired t-test and analysis of variance, with a p < 0.05 level of significance. Results Most patients regained the 60°/s quadriceps strength between three and 12 months (62.5% for the Button group vs. 50% for the AperFix group), as well as the 180°/s strength (79.17% vs 70.83%); however, at the 24-month evaluation, seven (29.17%) patients in the Button group and five (20.83%) in the AperFix group had significant deficits. The 60°/s flexor strength was regained in the first six months in 19 (79.17%) patients in the Button group and in 16 (66.7%) patients in the AperFix group, whereas the percentages for the 180°/s strength were 79.17% and 75%, respectively. Beyond the 24-month evaluation, only three (12.5%) patients in the Button group and four (16.67%) in the AperFix group had significant flexor deficits. Regarding the H/Q ratio, at 60°/s, the mean recovery time was six and 7.5 months for the Button and AperFix groups, respectively, whereas 15 and 12 patients, respectively, did not recover during the two-year duration. At 180°/s, a mean recovery time of six months was needed for the button group, and nine patients did not recover two years later. For the AperFix group, nine months were needed, and 12 patients did not recover in two years. Clinical performance and anterior knee stability showed no statistically significant differences between groups. Conclusions Although there were no significant differences in clinical performance, knee stability, and isokinetic strength testing between expandable and cortical button femoral fixation groups, return to play was doubtful at two years postoperatively.

12.
J Neurosci ; 41(18): 4088-4099, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33741722

RESUMO

Sleep has been shown to be critical for memory consolidation, with some research suggesting that certain memories are prioritized for consolidation. Initial strength of a memory appears to be an important boundary condition in determining which memories are consolidated during sleep. However, the role of consolidation-mediating oscillations, such as sleep spindles and slow oscillations, in this preferential consolidation has not been explored. Here, 54 human participants (76% female) studied pairs of words to three distinct encoding strengths, with recall being tested immediately following learning and again 6 h later. Thirty-six had a 2 h nap opportunity following learning, while the remaining 18 remained awake throughout. Results showed that, across 6 h awake, weakly encoded memories deteriorated the fastest. In the nap group, however, this effect was attenuated, with forgetting rates equivalent across encoding strengths. Within the nap group, consolidation of weakly encoded items was associated with fast sleep spindle density during non-rapid eye movement sleep. Moreover, sleep spindles that were coupled to slow oscillations predicted the consolidation of weak memories independently of uncoupled sleep spindles. These relationships were unique to weakly encoded items, with spindles not correlating with memory for intermediate or strong items. This suggests that sleep spindles facilitate memory consolidation, guided in part by memory strength.SIGNIFICANCE STATEMENT Given the countless pieces of information we encode each day, how does the brain select which memories to commit to long-term storage? Sleep is known to aid in memory consolidation, and it appears that certain memories are prioritized to receive this benefit. Here, we found that, compared with staying awake, sleep was associated with better memory for weakly encoded information. This suggests that sleep helps attenuate the forgetting of weak memory traces. Fast sleep spindles, a hallmark oscillation of non-rapid eye movement sleep, mediate consolidation processes. We extend this to show that fast spindles were uniquely associated with the consolidation of weakly encoded memories. This provides new evidence for preferential sleep-based consolidation and elucidates a physiological correlate of this benefit.


Assuntos
Consolidação da Memória/fisiologia , Memória/fisiologia , Fases do Sono/fisiologia , Eletroencefalografia , Feminino , Humanos , Aprendizagem/fisiologia , Masculino , Rememoração Mental , Desempenho Psicomotor/fisiologia , Sono/fisiologia , Sono de Ondas Lentas/fisiologia , Vigília , Adulto Jovem
13.
Neuropsychopharmacology ; 45(13): 2189-2197, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32919407

RESUMO

Sleep spindles, defining oscillations of stage 2 non-rapid eye movement sleep (N2), mediate memory consolidation. Schizophrenia is characterized by reduced spindle activity that correlates with impaired sleep-dependent memory consolidation. In a small, randomized, placebo-controlled pilot study of schizophrenia, eszopiclone (Lunesta®), a nonbenzodiazepine sedative hypnotic, increased N2 spindle density (number/minute) but did not significantly improve memory. This larger double-blind crossover study that included healthy controls investigated whether eszopiclone could both increase N2 spindle density and improve memory. Twenty-six medicated schizophrenia outpatients and 29 healthy controls were randomly assigned to have a placebo or eszopiclone (3 mg) sleep visit first. Each visit involved two consecutive nights of high density polysomnography with training on the Motor Sequence Task (MST) on the second night and testing the following morning. Patients showed a widespread reduction of spindle density and, in both groups, eszopiclone increased spindle density but failed to enhance sleep-dependent procedural memory consolidation. Follow-up analyses revealed that eszopiclone also affected cortical slow oscillations: it decreased their amplitude, increased their duration, and rendered their phase locking with spindles more variable. Regardless of group or visit, the density of coupled spindle-slow oscillation events predicted memory consolidation significantly better than spindle density alone, suggesting that they are a better biomarker of memory consolidation. In conclusion, sleep oscillations are promising targets for improving memory consolidation in schizophrenia, but enhancing spindles is not enough. Effective therapies also need to preserve or enhance cortical slow oscillations and their coordination with thalamic spindles, an interregional dialog that is necessary for sleep-dependent memory consolidation.


Assuntos
Consolidação da Memória , Esquizofrenia , Estudos Cross-Over , Método Duplo-Cego , Eletroencefalografia , Zopiclona , Humanos , Esquizofrenia/tratamento farmacológico , Sono , Fases do Sono
14.
Schizophr Res ; 221: 63-70, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32014359

RESUMO

Although schizophrenia is defined by waking phenomena, a growing literature documents a deficit in sleep spindles, a defining oscillation of stage 2 non-rapid eye movement sleep. Compelling evidence supports an important role for spindles in cognition, and particularly memory. In schizophrenia, although the spindle deficit correlates with impaired sleep-dependent memory consolidation, recent clinical trials find that increasing spindles does not improve memory. This may reflect that sleep-dependent memory consolidation relies not on spindles alone, but also on their precise temporal coordination with cortical slow oscillations and hippocampal sharp-wave ripples. Consequently, interventions to improve memory in schizophrenia must not only increase spindles, but also preserve or enhance slow oscillations, hippocampal ripples and their temporal relations. Because hippocampal ripples and the activity of the thalamic spindle generator are difficult to measure noninvasively, screening potential interventions requires complementary animal and human studies. In this review we (i) propose that sleep oscillations are novel pathophysiological targets for therapy to improve cognition in schizophrenia; (ii) summarize our understanding of how these oscillations interact to consolidate memory; (iii) suggest that a systems neuroscience strategy is essential to selecting and evaluating effective treatments, and illustrate this with findings from clinical trials; and (iv) selectively review the interventional literature relevant to sleep and cognition, covering both pharmacological and noninvasive brain stimulation approaches. We conclude that coordinated sleep oscillations are promising targets for improving cognition in schizophrenia and that effective therapies will need to preserve or enhance sleep oscillatory dynamics and restore function at the network level.


Assuntos
Consolidação da Memória , Esquizofrenia , Animais , Eletroencefalografia , Hipocampo , Humanos , Memória , Esquizofrenia/complicações , Sono , Fases do Sono
15.
J Sleep Res ; 29(5): e12968, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31860157

RESUMO

Sleep spindles, defining oscillations of non-rapid eye movement stage 2 sleep (N2), mediate memory consolidation. Spindle density (spindles/minute) is a stable, heritable feature of the sleep electroencephalogram. In schizophrenia, reduced spindle density correlates with impaired sleep-dependent memory consolidation and is a promising treatment target. Measuring sleep spindles is also important for basic studies of memory. However, overnight sleep studies are expensive, time consuming and require considerable infrastructure. Here we investigated whether afternoon naps can reliably and accurately estimate nocturnal spindle density in health and schizophrenia. Fourteen schizophrenia patients and eight healthy controls had polysomnography during two overnights and three afternoon naps. Although spindle density was lower during naps than nights, the two measures were highly correlated. For both groups, naps and nights provided highly reliable estimates of spindle density. We conclude that naps provide an accurate, reliable and more scalable alternative to measuring spindle density overnight.


Assuntos
Eletroencefalografia/métodos , Polissonografia/métodos , Esquizofrenia/complicações , Transtornos do Sono-Vigília/etiologia , Sono/fisiologia , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino
16.
Artigo em Inglês | MEDLINE | ID: mdl-31262708

RESUMO

BACKGROUND: Converging evidence implicates abnormal thalamocortical interactions in the pathophysiology of schizophrenia. This evidence includes consistent findings of increased resting-state functional connectivity of the thalamus with somatosensory and motor cortex during wake and reduced spindle activity during sleep. We hypothesized that these abnormalities would be correlated, reflecting a common mechanism: reduced inhibition of thalamocortical neurons by the thalamic reticular nucleus (TRN). The TRN is the major inhibitory nucleus of the thalamus and is abnormal in schizophrenia. Reduced TRN inhibition would be expected to lead to increased and less filtered thalamic relay of sensory and motor information to the cortex during wake and reduced burst firing necessary for spindle initiation during sleep. METHODS: Overnight polysomnography and resting-state functional connectivity magnetic resonance imaging were performed in 26 outpatients with schizophrenia and 30 demographically matched healthy individuals. We examined the relations of sleep spindle density during stage 2 non-rapid eye movement sleep with connectivity of the thalamus to the cortex during wakeful rest. RESULTS: As in prior studies, patients with schizophrenia exhibited increased functional connectivity of the thalamus with bilateral somatosensory and motor cortex and reduced sleep spindle density. Spindle density inversely correlated with thalamocortical connectivity, including in somotosensory and motor cortex, regardless of diagnosis. CONCLUSIONS: These findings link two biomarkers of schizophrenia-the sleep spindle density deficit and abnormally increased thalamocortical functional connectivity-and point to deficient TRN inhibition as a plausible mechanism. If TRN-mediated thalamocortical dysfunction increases risk for schizophrenia and contributes to its manifestations, understanding its mechanism could guide the development of targeted interventions.


Assuntos
Córtex Cerebral/fisiopatologia , Esquizofrenia/fisiopatologia , Sono/fisiologia , Tálamo/fisiopatologia , Adulto , Mapeamento Encefálico , Eletroencefalografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiopatologia , Polissonografia
17.
J Prosthodont ; 16(6): 421-30, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17683475

RESUMO

PURPOSE: The purpose of this project was to compare alveolar bone repair by allogeneic mesenchymal stem cells using bioglass or synthetic hydroxyapatite (HA)/tricalcium phosphate (TCP) granular scaffolds delivered in a thermoplastic polymeric carrier. MATERIALS AND METHODS: Canine mesenchymal stem cells were obtained from iliac crest bone marrow of beagle dogs and expanded without differentiation. Cells were resuspended at a final concentration of 5 x 10(6) cells/ml in a thermoplastic polymeric carrier (30% w/v Pluronic F-127) and mixed with an equal volume of synthetic HA/TCP or bioglass scaffold and placed into surgically created 5 mm cylindrical defects in the edentulous premolar region of beagle dogs. After 4 weeks or 7 weeks, tissue healing was evaluated by standard histomorphometric methods (Bioquant Nova, Bioquant Image Analysis Corporation, Nashville, TN) by measurement of bone formation within five random sites from each biopsy. RESULTS: After 4 weeks, sites treated with or without mesenchymal stem cells contained 58.25 +/-18.43% or 43.35 +/- 17.68% bone area (p= 0.049), respectively. After 7 weeks, sites treated with or without mesenchymal stem cells contained 62.73 +/- 19.10% or 60.39 +/- 21.32% bone area. Bone formation occurred without inflammation in defects treated using Pluronic F-127 carrier with and without mesenchymal stem cells. There was no difference in percent bone area when bioglass or HA/TCP scaffolds were compared at either time point. CONCLUSIONS: The thermoplastic polymeric carrier did not limit alveolar bone repair in the canine mandible. The combination of a thermoplastic, viscous carrier with a granular scaffold allowed for the delivery of allogeneic mesenchymal stem cells in a clinically manageable form that enhanced bone formation at early stages of alveolar repair.


Assuntos
Mandíbula/cirurgia , Transplante de Células-Tronco Mesenquimais/métodos , Poloxâmero/uso terapêutico , Tensoativos/uso terapêutico , Engenharia Tecidual/métodos , Alicerces Teciduais , Perda do Osso Alveolar/cirurgia , Processo Alveolar/fisiopatologia , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Substitutos Ósseos/química , Substitutos Ósseos/uso terapêutico , Fosfatos de Cálcio/química , Fosfatos de Cálcio/uso terapêutico , Cerâmica/química , Cerâmica/uso terapêutico , Cães , Durapatita/química , Durapatita/uso terapêutico , Mandíbula/fisiopatologia , Minerais/química , Minerais/uso terapêutico , Osteogênese/fisiologia , Poloxâmero/química , Tensoativos/química , Fatores de Tempo , Alicerces Teciduais/química , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA