Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 11(11)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38006014

RESUMO

TNX-1800 is a synthetically derived live recombinant chimeric horsepox virus (rcHPXV) vaccine candidate expressing Wuhan SARS-CoV-2 spike (S) protein. The primary objective of this study was to evaluate the immunogenicity and efficacy of TNX-1800 in two nonhuman primate species challenged with USA-WA1/2020 SARS-CoV-2. TNX-1800 vaccination was well tolerated with no serious adverse events or significant changes in clinical parameters. A single dose of TNX-1800 generated humoral responses in African Green Monkeys and Cynomolgus Macaques, as measured by the total binding of anti-SARS-CoV-2 S IgG and neutralizing antibody titers against the USA-WA1/2020 strain. In addition, a single dose of TNX-1800 induced an interferon-gamma (IFN-γ)-mediated T-cell response in Cynomolgus Macaques. Following challenge with SARS-CoV-2, African Green and Cynomolgus Macaques exhibited rapid clearance of virus in the upper and lower respiratory tract. Future studies will assess the efficacy of TNX-1800 against newly emerging variants and demonstrate its safety in humans.

2.
Virology ; 344(1): 17-24, 2006 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-16364731

RESUMO

One of the herpes simplex virus envelope glycoproteins, designated gD, is the principal determinant of cell recognition for viral entry. Other viral glycoproteins, gB, gH and gL, cooperate with gD to mediate the membrane fusion that is required for viral entry and cell fusion. Membrane fusion is triggered by the binding of gD to one of its receptors. These receptors belong to three different classes of cell surface molecules. This review summarizes recent findings on the structure and function of gD. The results presented indicate that gD may assume more than one conformation, one in the absence of receptor, another when gD is bound to the herpesvirus entry mediator, a member of the TNF receptor family, and a third when gD is bound to nectin-1, a cell adhesion molecule in the immunoglobulin superfamily. Finally, information and ideas are presented about a membrane-proximal region of gD that is required for membrane fusion, but not for receptor binding, and that may have a role in activating the fusogenic activity of gB, gH and gL.


Assuntos
Glicoproteínas/fisiologia , Simplexvirus/fisiologia , Proteínas do Envelope Viral/fisiologia , Fusão Celular , Glicoproteínas/química , Glicoproteínas/metabolismo , Modelos Moleculares , Receptores Virais/metabolismo , Simplexvirus/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Replicação Viral
3.
Proc Natl Acad Sci U S A ; 101(34): 12414-21, 2004 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-15273289

RESUMO

Glycoprotein D (gD) determines which cells can be infected by herpes simplex virus (HSV) by binding to one of the several cell surface receptors that can mediate HSV entry or cell fusion. These receptors include the herpesvirus entry mediator (HVEM), nectin-1, nectin-2, and sites in heparan sulfate generated by specific 3-O-sulfotransferases. The objective of the present study was to identify residues in gD that are critical for physical and functional interactions with nectin-1 and nectin-2. We found that double or triple amino acid substitutions at positions 215, 222, and 223 in gD caused marked reduction in gD binding to nectin-1 and a corresponding inability to function in cell fusion or entry of HSV via nectin-1 or nectin-2. These substitutions either enhanced or did not significantly inhibit functional interactions with HVEM and modified heparan sulfate. These and other results demonstrate that different domains of gD, with some overlap, are critical for functional interactions with each class of entry receptor. Viral entry assays, using gD mutants described here and previously, revealed that nectins are the principal entry receptors for selected human cell lines of neuronal and epithelial origin, whereas HVEM or nectins could be used to mediate entry into a T lymphocyte line. Because T cells and fibroblasts can be infected via HVEM, HSV strains carrying gD mutations that prevent entry via nectins may establish transient infections in humans, but perhaps not latent infections of neurons, and are therefore candidates for development of safe live virus vaccines and vaccine vectors.


Assuntos
Moléculas de Adesão Celular/metabolismo , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 2/metabolismo , Mutação , Proteínas do Envelope Viral/metabolismo , Animais , Linhagem Celular , Herpesvirus Humano 1/genética , Herpesvirus Humano 2/genética , Humanos , Fusão de Membrana/fisiologia , Modelos Moleculares , Nectinas , Conformação Proteica , Receptores Virais/genética , Receptores Virais/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA