Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Transplant Proc ; 48(6): 2200-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27569971

RESUMO

Islet transplantation can potentially cure type 1 diabetes mellitus, but it is limited by a shortage of human donors as well as by islet graft destruction by inflammatory and thrombotic mechanisms. A possible solution to these problems is to use genetically modified pig islets. Endothelial protein C receptor (EPCR) enhances protein C activation and regulates coagulation, inflammation, and apoptosis. We hypothesized that human EPCR (hEPCR) expression on donor islets would improve graft survival and function. Islets from an hEPCR transgenic mouse line strongly expressed the transgene, and hEPCR expression was maintained after islet isolation. Islets were transplanted from hEPCR mice and wild-type (WT) littermates into diabetic mice in a marginal-dose syngeneic intraportal islet transplantation model. The blood glucose level normalized within 5 days in 5 of 7 recipients of hEPCR islets, compared with only 2 of 7 recipients of WT islets (P < .05). Transplanted hEPCR islets had better preserved morphology and more intense insulin staining than WT grafts, and they retained transgene expression. The improved engraftment compared with WT islets suggests that inflammation and coagulation associated with the transplant process can be reduced by hEPCR expression on donor tissue.


Assuntos
Antígenos CD/metabolismo , Diabetes Mellitus Experimental/cirurgia , Diabetes Mellitus Tipo 1/cirurgia , Transplante das Ilhotas Pancreáticas , Receptores de Superfície Celular/metabolismo , Transplantes/metabolismo , Animais , Apoptose , Glicemia/análise , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Tipo 1/sangue , Receptor de Proteína C Endotelial , Sobrevivência de Enxerto , Humanos , Insulina/análise , Masculino , Camundongos , Camundongos Transgênicos , Substâncias Protetoras/metabolismo , Proteína C/metabolismo , Suínos
2.
J Neural Eng ; 10(1): 016008, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23283383

RESUMO

Injury to nerve tissue in the peripheral nervous system (PNS) results in long-term impairment of limb function, dysaesthesia and pain, often with associated psychological effects. Whilst minor injuries can be left to regenerate without intervention and short gaps up to 2 cm can be sutured, larger or more severe injuries commonly require autogenous nerve grafts harvested from elsewhere in the body (usually sensory nerves). Functional recovery is often suboptimal and associated with loss of sensation from the tissue innervated by the harvested nerve. The challenges that persist with nerve repair have resulted in development of nerve guides or conduits from non-neural biological tissues and various polymers to improve the prognosis for the repair of damaged nerves in the PNS. This study describes the design and fabrication of a multimodal controlled pore size nerve regeneration conduit using polylactic acid (PLA) and (PLA):poly(lactic-co-glycolic) acid (PLGA) fibers within a neurotrophin-enriched alginate hydrogel. The nerve repair conduit design consists of two types of PLGA fibers selected specifically for promotion of axonal outgrowth and Schwann cell growth (75:25 for axons; 85:15 for Schwann cells). These aligned fibers are contained within the lumen of a knitted PLA sheath coated with electrospun PLA nanofibers to control pore size. The PLGA guidance fibers within the nerve repair conduit lumen are supported within an alginate hydrogel impregnated with neurotrophic factors (NT-3 or BDNF with LIF, SMDF and MGF-1) to provide neuroprotection, stimulation of axonal growth and Schwann cell migration. The conduit was used to promote repair of transected sciatic nerve in rats over a period of 4 weeks. Over this period, it was observed that over-grooming and self-mutilation (autotomy) of the limb implanted with the conduit was significantly reduced in rats implanted with the full-configuration conduit compared to rats implanted with conduits containing only an alginate hydrogel. This indicates return of some feeling to the limb via the fully-configured conduit. Immunohistochemical analysis of the implanted conduits removed from the rats after the four-week implantation period confirmed the presence of myelinated axons within the conduit and distal to the site of implantation, further supporting that the conduit promoted nerve repair over this period of time. This study describes the design considerations and fabrication of a novel multicomponent, multimodal bio-engineered synthetic conduit for peripheral nerve repair.


Assuntos
Regeneração Nervosa/fisiologia , Próteses Neurais , Doenças do Sistema Nervoso Periférico/cirurgia , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Animais , Movimento Celular/fisiologia , Ácido Láctico , Masculino , Células PC12 , Doenças do Sistema Nervoso Periférico/fisiopatologia , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Sprague-Dawley , Células de Schwann/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA